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ABSTRACT 
The resolution of a homodyne LADAR can be enhanced significantly by applying quantum 
optical techniques in the receiver.  This study, known as the Quantum Sensors Program, explored 
theoretically three types of quantum sensors, and developed two laboratory proof-of-concept 
demonstrations, one for angle-angle resolution improvement and the other for range resolution 
improvement.  With a quantum image enhancer (QIE) inserted between the receive optics and 
the detector of a classical homodyne LADAR, an angular cell resolution improvement of 10x can 
be realized.  The QIE is comprised of two key elements—a squeezed vacuum injector (SVI) that 
restores the high spatial frequencies lost by attenuation in soft-aperture entrance optics in the 
LADAR and a phase sensitive amplifier (PSA) that overcomes the inefficiency of the homodyne 
detector.  When the QIE is combined with a phase-conjugate optical coherence tomographic 
(PC-OCT) technique for a two-fold range resolution enhancement, a 200-fold voxel (angle-
angle-range) improvement is possible for a standoff homodyne LADAR.  Underlying theory is 
established that relates the LADAR’s signal-to-noise ratio (SNR) to its angular resolution.  This 
modeling provides the framework within which various detection scenarios can be compared 
when resolving specular returns and fully-developed speckle scatter from a LADAR target. The 
efficacy of using non-classical light (a Type-1 sensor) for propagation to a target was shown to 
offer, at most, an inconsequential target-detection advantage for the highly-lossy scenarios 
associated with LADAR operation over 10-100 km standoff ranges. Several key no-go theorems 
were developed with respect to both Type-1 and Type-3 sensors. Two alternative quantum sensor 
categories—Type-2 using classical light with a non-standard receiver and Type-3 using 
transmitter-receiver entanglement—were studied theoretically. The approach employing a QIE 
for a Type-2 sensor was shown to present the most promise.  The characteristics of the three 
types of sensors and a summary of salient theoretical results related to each type are presented. In 
addition, extensive modeling based on the developed theory show Type-2 sensor image 
improvement realized by employing SVI, PSA and combined SVI and PSA. Experimental results 
validating the QIE concept are shown using a PSA for angle image improvement and PC-OCT 
for two-fold range improvement, as well as for dispersion compensation.  A Type-3 sensor 
technique, known as quantum illumination, was also studied theoretically and its application to 
secure communication briefly summarized. Ghost imaging applied to standoff sensing is 
examined and its underlying theory comprehensively explored. Finally, a conceptual design is 
introduced for a homodyne LADAR Type-2 sensor incorporating both PSA and SVI in a 
quantum-enhanced receiver. 
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EXECUTIVE SUMMARY 

Conventional laser radar, or LADAR, has a spatial resolution that is restricted by the 
Rayleigh limit of its entrance pupil and its signal-to-noise ratio (SNR).  In Phase I of the 
DARPA Quantum Sensors Program (QSP), researchers at Harris Corp., MIT, 
Northwestern University, University of Texas, Arlington, and BBN Technologies have 
shown — through extensive theory, modeling and proof-of-concept experiments — that 
quantum optical techniques can substantially improve the spatial resolution of such a 
sensor.  As work progressed during Phase I of QSP, researchers focused on a LADAR 
design consisting of a soft-aperture, homodyne-reception system interrogating rough-
surfaced targets whose returns exhibited fully-developed laser speckle.  A coherent-state 
transmitter with a conventional homodyne receiver as a baseline LADAR sensor was 
augmented with squeezed-vacuum injection (SVI) at the soft aperture pupil to ameliorate 
the loss of high spatial-frequency information that this aperture induces.  Because the 
standard Rayleigh-resolution criterion addresses the problem of distinguishing the 
presence of two point objects from the presence of one, decision theory was applied to 
obtain a quantitative performance comparison between conventional and SVI-augmented 
homodyne reception for such an idealized scenario.  In particular, the spatial resolution 
was defined as the minimum angular separation between two speckle-return point targets 
at which the two targets can be distinguished from a single speckle-return point target 
within a specified error-probability bound.  Furthermore, sub-unity detection efficiency 
was mitigated through the use of phase sensitive amplification (PSA) prior to detection.  
PSA gain overcomes the loss from inefficient detection and provides a substantial 
performance improvement, even without SVI, when detection efficiency is very low.  
Because LADARs are most frequently used to image complicated scenes, the modulation 
transfer function (MTF) behavior was derived for imaging extended speckle targets with 
the enhanced SVI plus PSA LADAR.  Using an Air Force test pattern and a typical target 
scene, researchers performed computer simulations of conventional and quantum-
enhanced imagery that illustrated the resolution enhancement of LADAR operation 
enabled by SVI, PSA and combined SVI plus PSA. 

Theory developed during QSP Phase I can be distinguished by the taxonomy of 
three types of sensors based on whether or not the LADAR employs classical or non-
classical light.  A Type-1 sensor transmits non-classical light that is not entangled with 
the receiver.  Theoretical no-go theorems for a Type-1 sensor were developed proving 
that the loss encountered in reasonable operational LADAR scenarios—1 to 100 km 
standoff distance—is so significant that there is virtually no advantage, as compared with 
a conventional classical-state LADAR, in using a non-classical transmitter state. For  
example,  theory has shown that for a non-classical ten entangled photon N00N state used 
as a Type-1 sensor, typical losses introduce a prohibitively low probability of success (10-

40 ), leading to resolution capabilities below that of a classical sensor of equal power. In 
contrast, a Type-2 sensor transmits a classical state of light that is not entangled with the 
receiver, but employs a non-standard receiver, using quantum optical techniques, to gain 
its advantage over a classical LADAR. By using SVI and PSA in a quantum image 
enhancer (QIE), in conjunction with phase-conjugate optical coherence tomography (PC-
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OCT), QSP researchers have theoretically confirmed that a potential 200-fold voxel 
(angle-angle-range volume) resolution improvement is possible.  A Type-3 sensor 
transmits a state of light — either classical or non-classical — that is entangled with the 
LADAR receiver.  One instantiation of this type of sensor, known as quantum 
illumination (QI), has been shown theoretically to enable a 6 dB error-exponent 
improvement in target detection performance, as well as improvement in one-versus-two 
point target resolution, when compared to a classical LADAR emitting identical optical 
power. 

A number of variations of ghost imaging were explored and a comprehensive 
theoretical foundation established for several illumination scenarios. The salient features 
of a Gaussian-state analysis of ghost imaging are presented unifying prior work on 
biphoton and pseudothermal sources. Our analysis indicates that ghost-image formation 
is intrinsically due to classical coherence propagation, with the principal advantage 
afforded by the biphoton state being high-contrast imagery in the wideband limit. The 
Gaussian-state theory of pseudothermal ghost-image formation enabled the QSP theory 
group to identify two new configurations for lensless ghost imaging. First, theoretical 
results demonstrate that ghost imaging can be accomplished using a spatial modulator to 
create signal and reference beams with controlled spatial incoherence.  The second 
configuration uses only one detector—a bucket detector—that collects a single pixel of 
light which has interacted with the object.  This novel concept, referred to as 
computational ghost imaging, permits 3-D sectioning to be performed without a high 
spatial-resolution detector. . 

In summary, theory pertaining to Type-1 sensors showed, via an encompassing 
no-go theorem, that propagation loss obviated any resolution improvement.  A Type-3 
sensor, known as QI, could produce a 6 dB error-exponent improvement for target 
detection in a lossy, noisy environment when operated in a low probability detect or low 
probability of intercept (LPD/LPI) mode.  However, the benefit afforded by QI over a 
classical LADAR vanishes when the source power is allowed to be increased.  For a 
Type-2 sensor concept developed during the QSP study, the foundation theory and the 
accompanying detailed modeling showed that 15 dB of SVI plus 15 dB of PSA 
(physically attainable values) can yield a 7-to-10-fold increase in the number of spatial 
resolution cells for a 25% detection efficiency compared with a Gaussian soft-aperture 
LADAR whose baseline SNR without SVI and PSA is 20 dB.  Moreover, a proof-of-
concept PSA experiment validated the concept that angle-angle improvement could 
indeed be realized. Furthermore, multiple spatial mode propagation theory corroborated 
the gains measured experimentally in the nonlinear crystals used for the PSA. By 
applying a technique known as phase-conjugate optical coherence tomography, QSP 
researchers experimentally demonstrated simultaneous two-fold range resolution 
improvement and propagation dispersion cancellation.  Finally, a design concept was 
created for a quantum LADAR incorporating a QIE with conventional ranging that may 
be built in a future phase of the Quantum Sensors Program using present day squeezing 
and phase sensitive amplification apparatus and techniques.
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1.0 INTRODUCTION 
This report summarizes the fundamental theory for standoff quantum sensors and the 
experimental results from two complementary proof-of-concept laboratory 
demonstrations that validate the efficacy of using quantum optical techniques to enhance 
sensor resolution.  Three types of sensors are defined theoretically based upon whether 
classical light or non-classical light is emitted by the sensor to interrogate the remote 
target.  Under certain operating conditions, general theorems were proven which 
determine whether or not specific types of sensors could provide improved resolution 
when compared to classical Rayleigh resolution criterion.  Results for a specific sensor – 
a LADAR operating at a range from the target as far as 1 to 100 km – emitting classical 
light but operating with a quantum image enhancer (QIE) in its receiver show 
theoretically that 10x resolution cell improvement in angle and a 2x improvement in 
range resolution can be realized with an overall voxel (angle-angle-range) improvement 
of 200x.  This LADAR needs to operate with a soft aperture and employ homodyne 
detection to realize this resolution improvement. 
 
The theoretical operating characteristics predicted for this homodyne LADAR were 
modeled and two experiments undertaken — one showing angle improvement and the 
other showing 2x range improvement.  This remarkable improvement is achieved by two 
separate processes — a pair of functions that act in concert for angle improvement and a 
different function that effects improved range resolution.  The angle resolution 
improvement is brought about by employing squeezed vacuum injection (SVI) to recover 
the high spatial frequency signal-to-noise ratio (SNR) lost from using a soft aperture and 
noiseless amplification by a phase sensitive amplifier (PSA) to overcome inefficiency in 
homodyne detection.  The combined effects of SVI and PSA enable the QIE to provide 
the 10x cell image improvement.  In a separate operation, range resolution is improved by 
using a phase-conjugate optical coherence tomography (PC-OCT) technique. 
 
As a first step in quantifying the characteristics of a quantum enhanced LADAR, a 
taxonomy of three types of sensors was established:  Type-1 in which the emitted light is 
non-classical and not entangled with the receiver; Type-2 in which the emitted light is 
classical and not entangled with the receiver but quantum enhancement is applied in the 
receiver; and Type-3 in which the emitted light is classical or non-classical but entangled 
with light retained by the LADAR.  Theorems bounding the operating characteristics of 
these Type-1 and Type-3 sensors are presented in the first technical discussion (Section 
2.0) of this report summarizing theoretical and modeling results. 
 
To supplement the theoretical work, a second essential portion of this study refines the 
concept of resolution and connects SNR of the LADAR with its operating angular 
resolution.  This refinement establishes the baseline against which quantum enhanced 
performance can be compared, and its details are contained in the theory section.  To 
demonstrate clearly the resolution improvement afforded by SVI plus PSA Type-2 
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quantum sensing, a hypothesis testing scenario is analyzed in which the target return is 
equally likely to be from an on-axis point target or from two equal-strength point targets 
placed symmetrically about the optical axis.  With a likelihood-ratio test, the minimum 
error probability decision rule is derived and its error probability calculated as a function 
of the angular separation between the two targets and the signal-to-noise ratio.  The 
scaling of the resolution with SNR will be presented in detail in the modeling portion of 
the theory section.  Specifically, improvements with SVI, PSA, and combined SVI and 
PSA are presented for a homodyne LADAR Type-2 sensor with a detection efficiency of 
0.25.  The hypothesis-testing resolution analysis is supplemented with image simulations 
based on the modulation transfer function (MTF) and noise spectral density of the 
baseline and quantum-enhanced sensors. MATLAB® simulations establish the subjective 
imaging benefits afforded by SVI plus PSA when viewing a speckle-limited USAF test 
target pattern.  Moreover, the simulations confirm the resolution predictions found for the 
point-target hypothesis testing problem. 
 
For completeness, the theory section includes a discussion of ghost imaging, for this 
technique often is included in the broader context of quantum enhanced imagers. A 
number of variations of ghost imaging are explored and a comprehensive theoretical 
foundation established for several illumination scenarios. The salient features of a 
Gaussian-state analysis of ghost imaging are presented unifying prior work on biphoton 
and pseudothermal sources. Our analysis indicates that ghost-image formation is 
intrinsically due to classical coherence propagation, with the principal advantage afforded 
by the biphoton state being high-contrast imagery in the wideband limit. The Gaussian-
state theory of pseudothermal ghost-image formation enabled our QSP theory group to 
identify two new configurations for lensless ghost imaging. First, theoretical results 
demonstrate that ghost imaging can be accomplished using a spatial modulator to create 
signal and reference beams with controlled spatial incoherence.  The second 
configuration uses only one detector—a bucket detector—that collects a single pixel of 
light which has interacted with the object.  This novel concept, referred to as 
computational ghost imaging, permits 3-D sectioning to be performed without a high 
spatial-resolution detector.  
 
Extensive work is presented on a particular Type-3 sensor known as quantum 
illumination (QI), because it affords a 4-fold improvement in target-detection error 
exponent, in comparison with a conventional LADAR of the same transmitter power, 
despite the destruction of its entanglement by channel loss and noise.  The interest in this 
type of sensor transcends that of a classical standoff LADAR with applications to low 
probability of intercept and low probability of detect (LPI/LPD) scenarios wherein 
operation would be low signal level transmission in a noisy background and for secure 
communications such as encountered with quantum key distribution (QKD).  The 
theoretical results and key theorems are discussed, as well as the supporting modeling 
that illustrates the SNR improvement. 
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The Type-2 LADAR theory and modeling presented in this report assume a planar target 
at known range with emphasis placed on the enhancement of angular resolution provided 
by SVI and PSA in a soft-aperture LADAR.  In addition, the theory and modeling are 
based on a squeezed-vacuum source and phase-sensitive amplifiers that are assumed to be 
continuous-wave (cw) pumped devices.  Details of key theorems that are discussed in the 
theory section or referenced team memoranda that have not been formally published are 
included in the appendix. 
 
Following the theory and modeling section, Sections 3.0 and 4.0 present data from the 
two key proof-of-concept experiments that were performed during this program. The 
results from these proof-of-concept experiments show the angle resolution improvement 
brought about by using the PSA portion of the QIE and the two-fold range resolution 
improvement via PC-OCT.  Additionally, the PC-OCT experiment also showed definitive 
dispersion compensation.  Although the quantum enhanced concept reported here can be 
applied to any soft-aperture, homodyne LADAR operated at any wavelength within a 
large portion of the electromagnetic spectrum, all experimental work was undertaken at 
1.55 μm to take advantage of several pieces of key equipment and available lasers.  
 
A summary of PSA experimental results and the accompanying theory of multimode 
image amplification are presented in Section 3.0.  Data are presented which corroborate 
the PSA gain as a function of pump power of the nonlinear crystal.  A three dimensional 
numerical model, developed during the program, uses a split-step Fourier method whose 
results show good quantitative agreement with the experimental data.  Just as important, 
the model predicts an optimum input signal phase profile for image amplification in a 
PSA with a finite-size pump beam. 
 
Section 4.0 of this report summarizes the experimental results demonstrating a two-fold 
improvement in range resolution by using PC-OCT.  Data are also presented definitively 
demonstrating dispersion compensation using the PC-OCT technique.  Although 
dispersion is unlikely to be a problem for standoff sensors operating over terrestrial paths 
with picosecond pulses at 1.55 μm wavelengths, the compensation technique could be 
applicable at shorter pulsewidths or longer wavelengths. 
 
A possible quantum Type-2 LADAR concept is introduced in Section 5.0.  This LADAR 
would combine both SVI and PSA for angle-angle resolution improvement but would 
employ a classical range detector because the transverse resolution is the more important 
enhancement desired by the coherent LADAR community.  Development of this concept 
is envisioned for a follow-on effort. 
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Finally, the salient results of the report are summarized in Section 6.0, and some of the 
risks that need to be addressed in more detail in the future are outlined.  This report 
should provide a solid theoretical foundation for applying quantum optics to enhance the 
resolution of a LADAR operated as a standoff sensor. Additional investigation beyond 
this 18-month study would be necessary to build a more comprehensive picture of the 
complete application of quantum optics to sensors.   
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2.0 THEORY AND MODELING FOR QUANTUM IMAGING 

Phase I of the DARPA Quantum Sensors Program had, as its principal goal, developing 
the underlying theory — and supporting modeling — that would demonstrate the 
possibility of building an imaging sensor whose performance exceeded the Rayleigh 
resolution limit by a factor of ten (or more) through the use of quantum mechanical 
resources.  Proof-of-principle experiments in support of the core theory work were also 
possible, but not meant to be the focus of Phase I.  For its baseline sensor the Harris team 
chose a soft-aperture LADAR system, imaging spatially-resolved targets at ranges from 1 
to 100 km, see Figure 1. 
  

 
Figure 1: LADAR Standoff Sensing 

 
To beat the Rayleigh limit on angular resolution, the Harris team augmented its baseline 
LADAR receiver with a quantum image enhancer, comprised of squeezed-vacuum 
injection (SVI) plus phase-sensitive amplification (PSA), see Figure 2.  
  
 

LADAR sensorLADAR sensorLADAR sensorLADAR sensor  
Figure 2: QSP baseline and quantum enhanced LADAR  
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The QSP study combined improved angular resolution with improved range resolution 
through use of phase-conjugate ranging, see Figure 3.  Because the fundamental theory of 
phase-conjugate ranging had been established in earlier work [1] by members of the QSP 
effort, and because beating the Rayleigh limit was the sine qua non criterion for initiation 
of a Phase II program, the QSP theory and modeling effort concentrated on quantifying 
the angular resolution limit in its baseline LADAR concept and demonstrating that its 
SVI plus PSA quantum-image enhancer did lead to a 10-fold improvement in resolution 
on a pixel basis.  

Target

Transmitter

Detector

Phase-conjugate amplifier

Second transmitter

Target

Transmitter

Detector

Phase-conjugate amplifier

Second transmitter

Target

Transmitter

Detector

Phase-conjugate amplifier

Second transmitter

 
Figure 3: LADAR system for phase-conjugate ranging 

 
However, in order to fully explore the possibilities afforded by quantum mechanical 
resources in imaging scenarios, the Harris team also developed and instantiated a 
taxonomy for quantum imaging.  The quantum-enhanced sensor from Figure 2 is a Type-
2 system, in this taxonomy, because its transmitter employs classical-state (laser) light 
that is not entangled with the quantum state of the receiver, and the receiver employs 
non-classical resources to achieve its resolution enhancement over the baseline sensor.  
However, even before embarking on a comprehensive theory for quantum imaging, a 
careful definition of what constitutes quantum imaging is essential.  That definition, and 
the quantum imaging taxonomy that follows there from, will be the first topic we will 
address in this section of the report.   

2.1 Quantum Imaging Taxonomy 
All optical imaging is quantum, regardless of whether it is performed passively, using 
natural illumination, or actively, with laser light in a LADAR system.  This is so because 
light is quantum mechanical and photodetection is a quantum measurement.  However, 
the Harris team believes that a clear distinction can and must be drawn between imaging 
systems — LADAR systems, in the case of our Quantum Sensors Program effort — that 
require quantum mechanical descriptions as opposed to those for which a quantitatively 
identical characterization can be obtained from semiclassical photodetection theory.  In 
semiclassical photodetection theory light is treated as a classical (possibly stochastic) 
electromagnetic field and the fundamental noise encountered in photodetection is the shot 
noise associated with the discreteness of the electron charge.  It has long been known that 
light beams whose quantum states are Glauber coherent states or classically-random 
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mixtures thereof have quantum photodetection statistics — for the three standard 
photodetection configurations, viz., direct, homodyne, and heterodyne detection — that 
coincide with those obtained from semiclassical theory.  The Harris baseline sensor, 
which will be described in greater detail below, is thus a classical imager because its 
performance can be correctly calculated from semiclassical photodetection theory.  More 
generally, semiclassical analysis is sufficient to quantify LADAR performance when all 
of the following conditions are met: 
 

• The quantum state of the light radiated by the transmitter is classical. 
• Electromagnetic propagation to and from the target is linear, i.e., characterized by 

linear diffraction integrals. 
• The target interaction is linear, e.g., reflection from a planar object as represented 

by a multiplicative field-reflection coefficient. 
• The receiver uses direct, homodyne, or heterodyne detection. 

 
The LADAR scenario shown in Figure 1 is one in which both the propagation and target 
interaction will be linear.  Thus, for a LADAR system to be a quantum imager — as 
opposed to one for which semiclassical analysis suffices — it must either employ a non-
classical state transmitter, or use a non-standard receiver, or both.   The Harris team 
refined the description of quantum imagers into the following trichotomy. 
 

• Type-1 sensors:  A Type-1 sensor transmits a non-classical state that is not 
entangled with the receiver. 

• Type-2 sensors:  A Type-2 sensor transmits a classical state that is not entangled 
with the receiver and employs a non-standard (quantum-enhanced) detection 
procedure in that receiver. 

• Type-3 sensors:  A Type-3 sensor transmits a state — which may be classical or 
non-classical — that is entangled with the receiver. 

 
The Harris team expended its theory effort on topics concerning all three components of 
this quantum imaging taxonomy.  The bulk of the effort was devoted to the SVI plus PSA 
Type-2 sensor shown in Figure 2.  However, considerable work established theorems and 
determined practical limitations on the potential offered by Type-1 and Type-3 sensors.  
In addition, we identified possible performance advantages afforded by quantum 
illumination — a novel class of Type-3 systems— in target detection, point-target 
resolution, and secure communication applications.  We also investigated ghost imaging 
systems, because prior work by some of our team members had determined the boundary 
between the classical and quantum versions of this sensor class [2], and we were well 
positioned to extend prior work to a full understanding of ghost imaging’s capabilities.1   

                                                 
1 Ghost imaging had been proposed by another Quantum Sensors Program contractor, and the Harris team 
investigated its potential because several Harris team members had substantial prior experience with ghost 
imaging. 
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2.2 No-Go Theorems for Type-1 and Type-3 Sensors 

At the outset of our theoretical work we chose a Type-2 sensor for our approach to 
beating the Rayleigh resolution limit.  This choice was firmly grounded in a basic fact of 
life for LADAR imaging in the Figure 1 scenario:  the transmitter-to-target-to-receiver 
path is exceedingly lossy.  In particular, we noted the following characteristics of such an 
imager 
 

• The diffraction-limited spot produced by realistic transmitter optics spatially 
resolves targets of interest.  Thus, the free-space transmitter-to-target loss is 
negligible. 

• Clear-weather extinction loss in the atmosphere — due to absorption and 
scattering — is not problematic, with loss coefficients of 0.5 to 1 dB/km being 
typical. 

• Target reflectivity is reasonable, with 10% being a typical value. 
• Targets of interest have surfaces that are quite rough on the scale of LADAR 

wavelengths making their reflection patterns quasi-Lambertian and the target-to-
receiver loss very high. 

 
Quasi-Lambertian target reflection leads to the high loss.  For example, with a 10-cm-
diameter receiver pupil collecting light from a target that is 10 km away, the loss due to 
quasi-Lambertian reflection is approximately 100 dB.  Non-classical light states — such 
as number states, squeezed states, and N00N states — suffer catastrophic degradation of 
their advantageous non-classical characteristics in such high-loss environments.  Hence 
the Harris team sought general no-go theorems for Type-1 and Type-3 sensors that might 
show they had little or no advantage in LADAR applications when compared to classical 
baseline systems.  Here we shall summarize the key results we derived from such studies; 
for proofs and additional details see [3]-[5].   

 
Consider the task of detecting a non-fluctuating point target of known reflectivity that 
may, or may not; be present in a particular azimuth-elevation-range bin.  Assume that this 
target is equally likely to be absent or present, and that the radar interrogates the chosen 
azimuth-elevation-range bin with M optical modes whose transmitter-to-target-to-
receiver coupling coefficients are { }:1m m Mκ ≤ ≤  arranged in decreasing order.  Then, 
if the transmitter is constrained to use at most NS photons on average and there is no noise 
in the propagation channel, the error probability of a system that uses the optimum non-
classical transmitter state, in conjunction with the minimum error probability receiver for 
the resulting target return, satisfies 
 

 Pr(e) ≥
1− 1− e−κ 1NS /(1−κ 1 )

2
.       (1) 
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This lower bound should be compared with the following upper bound on the error 
probability of an optimized classical system that uses coherent-state (laser) light of the 
same average photon number,  
 

 Pr(e) ≤
1− 1− e−κ 1NS

2
.       (2) 

 
Equations (1) and (2) reveal that the maximum performance improvement to be expected 
from use of a Type-1 quantum sensor in this highly idealized situation will be 
inconsequential when 100 dB loss is involved, i.e., when κ1 ≈10−10 .   
 
We have recently extended the preceding no-go result to Type-3 sensing when the 
transmitter employs signal-number diagonal (SND) states [4].  The task is still to detect a 
non-fluctuating point target of known reflectivity that is equally likely to be present in or 
absent from a particular azimuth-elevation-range bin.  The Type-3 sensor’s transmitter 
produces the M-mode-pair pure state2 
 
 |ψ >= ψ n |

n
∑  n >S | n > I ,       (3) 

 
where | n >K ≡| n1,n2,...,nM >K  for K = S, I is the M-mode number state for its signal (S) 
and idler (I) beams.  The transmitter uses the signal beam to interrogate the chosen 
azimuth-elevation-range bin, and retains the idler beam for a minimum error probability 
joint quantum measurement with the light returned from that bin.  Suppose, as before, 
that the transmitter-to-target-to-receiver coupling coefficients are { }:1m m Mκ ≤ ≤  
arranged in decreasing order, the transmitter is constrained to use at most NS photons on 
average in the signal beam, and there is no noise in the propagation channel.  Then it 
turns out that the optimum joint quantum measurement for the SND Type-3 sensor yields 
an error probability that is again bounded from below by the expression given in Eq. (1).  
Thus, as in the case of Type-1 sensing, there is virtually no value to using SND Type-3 
sensing in this highly idealized situation, i.e., for typical LADAR scenarios a coherent-
state (laser) transmitter of the same average photon number gives essentially the same 
performance.   
 

                                                 
2 Instead of | n > I{ }, the SND transmitter could employ any M-mode orthonormal basis for its idler states 
without changing the results of our analysis.   
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We obtained more elaborate and more useful no-go results from our classicalization 
theorem.   
 

Theorem (Classicalization):  Suppose that ˆ ρ in  is an arbitrary M-mode density 
operator at the input to a linear optical channel with modal transmissivities 
{ }:1m m Mκ ≤ ≤  and independent, identically-distributed, zero-mean, isotropic-

Gaussian modal noises with average photon numbers { }:1mN m M≤ ≤ .  Then the 
resulting output density operator, ˆ ρ out , will be a classical state if Nm ≥ κ m  holds 
for 1≤ m ≤ M .   

 
Now consider a Type-1 LADAR system that transmits the state ˆ ρ in .  Because background 
light at the eye-safe 1.55 μm wavelength is an isotropic Gaussian noise with average 
photon number per mode that will typically exceed the transmitter-to-target-to-receiver 
transmissivities, we see that the receiver will be observing a classical state, regardless of 
how non-classical the transmitter’s output may have been.  Furthermore, applying the 
classicalization theorem at the transmitter shows that the addition of isotropic-Gaussian 
noise with an average of one photon per mode will transform ˆ ρ in  into a classical state ˆ ρ in

c  
whose corresponding output state — after lossy, noisy propagation — will be denoted 
ˆ ρ out

c .  In terms of { }in out in outˆ ˆ ˆ ˆ, ; ,c cρ ρ ρ ρ  we have proven the following theorem bounding the 
difference in quantum measurement statistics resulting from LADAR transmission of ˆ ρ in  
versus LADAR transmission of ˆ ρ in

c .   
 

Theorem (Quantum Measurement Bound):  Let x  be the outcome of an arbitrary 
quantum measurement made at the LADAR receiver, and let Pr(x ∈X | ˆ ρ )  be the 
probability that this outcome lies in the set X when the LADAR’s transmitter state 
was ˆ ρ .  Then we have that 
 

 Pr(x ∈X | ˆ ρ in ) − Pr(x ∈X | ˆ ρ in
c ) ≤ 2

Nm

Nm +1m =1

M

∑ ,    (4) 

 
when the channel noise is sufficient to classicalize ˆ ρ out .   

 
At this point, our no-go theorem for Type-1 sensing follows immediately from 
classicalization and the quantum measurement bound.   
 

Theorem (Type-1 No-Go):  Let ˆ ρ in  be an M-mode non-classical input state for a 
LADAR system and let ˆ ρ in

c  be its classicalization.  Suppose that ˆ ρ in  has average 
modal photon numbers NSm

>> 1 for 1≤ m ≤ M  and that the transmitter-to-target-
to-receiver transmissivities and isotropic-Gaussian modal noise strengths satisfy 
κ m ≤ Nm << 1 for 1 ≤ m ≤ M .  Furthermore, assume that M is sufficiently small 
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that ε ≡ 2
Nm

Nm +1m =1

M

∑ << 1 prevails.  Then, the following conditions hold 

simultaneously: 
 

• tr ˆ ρ in
c ˆ N Sm

m =1

M

∑⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ − tr ˆ ρ in ˆ N Sm

m =1

M

∑⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ << tr ˆ ρ in ˆ N Sm

m =1

M

∑⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟     (5) 

 
• Pr(x ∈X | ˆ ρ in ) − Pr(x ∈X | ˆ ρ in

c ) ≤ ε ,     (6) 
 
where { }ˆ :1

mSN m M≤ ≤  are the modal photon-number operators at the LADAR 

transmitter and x  is the outcome of an arbitrary quantum measurement made at 
the LADAR receiver.   

 
The physical import of the Type-1 No-Go Theorem is simple.  Suppose its premises are 
satisfied.  Then, for any non-classical input state at the LADAR transmitter and any 
quantum measurement made at the LADAR receiver the classicalization of that 
transmitter state entails a negligible increase in the transmitter’s total average photon 
number and it results in a negligible change in the receiver’s quantum-measurement 
statistics.  In short, there is essentially nothing to be gained, in this Type-1 scenario, from 
use of quantum resources.   
 
We have also obtained the following no-go theorem for Type-3 quantum sensing. 
 

Theorem (Type-3 No-Go):  Let ˆ ρ in  be a two-mode non-classical state 
characterizing the signal and idler modes at the LADAR transmitter, with each 
having average photon number NS >> 1, and let ˆ ρ in

c  be the classicalization of ˆ ρ in .  
Suppose that the idler is retained in a lossless, noiseless manner at the LADAR 
but the signal is used to interrogate a target over a lossy (transmissivity κ << 1), 
very noisy (isotropic-Gaussian noise with average photon number 1N >> ) 
transmitter-to-target-to-receiver channel.  Then, if the channel is such that joint 
state, ˆ ρ out , of the target return and the idler is classical, we have that the following 
conditions hold simultaneously: 
 

• ( ) ( ) ( )c
in in in

ˆ ˆ ˆˆ ˆ ˆtr -tr trS S SN N Nρ ρ ρ<<      

 (7) 
 
1.0 in inˆ ˆPr( | ) Pr( | ) 2 / 1cx X x X Nρ ρ κ∈ − ∈ ≤ <<    
 (8) 
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where ˆ N S  is the signal-mode photon-number operator at the LADAR transmitter 
and x  is the outcome of an arbitrary joint quantum measurement — on the target 
return and the idler — made at the LADAR receiver. 
 

Our Type-3 No-Go Theorem shows that the performance obtained in two-mode Type-3   
quantum sensing is closely approximated — under the theorem’s premises — by that of a 
classicalized transmitter of essentially the same average transmitted photon number as the 
non-classical source.   
 
We shall revisit no-go theorems in Section 2.4.4, where we shall apply practical 
implementation considerations to lift the limitations of high-brightness, low-to-modest 
mode number that were required in the no-go theorems we have just presented.   

2.3 Imaging with Squeezed-Vacuum Injection and Phase-Sensitive Amplification 

The Harris team for the DARPA Quantum Sensors Program (QSP) chose to concentrate 
its Phase I efforts on the Type-2 quantum sensor shown in Figure 2 for improving the 
angular resolution of a classical-state baseline LADAR system.  In Type-2 quantum 
sensing, the transmitter emits a classical state — laser light — that is not entangled with 
any residual state left behind in the LADAR system.  The system then employs a non-
standard receiver — something other than ordinary heterodyne, homodyne, or direct 
detection — in which quantum effects provide enhanced angular resolution.   
 
In the baseline sensor, a laser transmitter illuminates the target region and the return from 
that region is collected by a soft-aperture entrance pupil and focused onto a homodyne 
detection array.  The same transmitter and homodyne detection array is used in the Harris 
team’s Type-2 quantum sensor, with a quantum image enhancer inserted between the 
entrance pupil and detector array.  The quantum image enhancer (QIE) employs spatially-
broadband squeezed-vacuum injection (SVI) at the entrance pupil to mitigate the loss of 
high spatial-frequency information that the baseline sensor incurs from soft-aperture 
attenuation.  The QIE also uses spatially-broadband phase-sensitive amplification (PSA) 
immediately before the homodyne array to compensate for low efficiency — the 
combination of mixing and quantum efficiency — in that homodyne detection process.  
The Harris team’s Phase I analysis and modeling have shown that the Type-2 sensor 
sketched in Figure 2 satisfies all the DARPA Quantum Sensor Program’s metrics for 
initiation of a Phase II program.  In this section we shall present a brief summary of those 
results, concentrating on the improvement in angular resolution when imaging a target in 
a single range bin.   
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2.3.1 System Configuration and Angular Resolution Analysis. 

The classical target-return complex-field envelope impinging on the soft-aperture 
entrance pupil of the LADAR receiver from a planar object located L meters away in the 
free-space3 Fraunhofer zone is given by 
 

 ER (ρ
→

, t) = ET∫ s(t − 2L /c)ξT (ρ
→

')T(ρ'
→

)
e− jk ρ

→
⋅ρ
→

' / L + jk |ρ
→

| 2 / 2L

jλL
d ρ

→

' ,  (9) 

 
where:  ET is the energy in the transmitted pulse (measured, for convenience, in units of 
the photon energy at the operating wavelength λ); s(t) is the normalized baseband shape 
of the transmitter pulse; c is the speed of light; ξT (ρ

→

') is the normalized transmitter beam 

pattern at the target plane;T(ρ'
→

)  is the target’s field-reflection coefficient; the remainder 

of the integrand is the Fraunhofer diffraction kernel with ρ
→

 and ρ'
→

 being 2-D vectors in 
the receiver’s entrance pupil and on the target plane, respectively; and we have omitted 
an unimportant absolute-phase factor.   
 
In the baseline sensor, the target-return field passes through a soft-aperture pupil,4 

P(ρ
→

) = e−2|ρ |
→ 2

/ R 2

, and is then focused onto a homodyne-detector array.  Equation (9) 
shows that the pupil-plane target-return field contains the spatial Fourier transform of the 
illuminated portion of the target’s field-reflectivity coefficient.  Thus the soft-aperture 
attenuation suppresses information about the target’s high spatial-frequency components, 
hence limiting the LADAR’s angular resolution.  In particular, when homodyne detection 
of the real quadrature of the focal-plane illumination is performed — using a spherical-
wave local oscillator on a continuum photodetector array — followed by post-detection 
matched filtering in the time domain, the result is a spatial random process  
 

yr(ρ
→

) = Re η ET
πR2

2λL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫ ξT (ρ

→

')ξP (ρ
→

− ρ
→

')T(ρ'
→

)d ρ
→

'
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + nr (ρ

→

),  (10) 

 
where we have corrected for image inversion, used a normalization convention that is 
convenient for the quantum case that will follow, defined η to be the receiver’s 
homodyne efficiency and again suppressed an unimportant absolute-phase factor.  The 
first term in Eq. (10) contains the target image with   
 
                                                 
3 For terrestrial application scenarios, in which atmospheric turbulence is neglected, this diffraction 
formula should be augmented with an atmospheric extinction term to account for absorption plus scattering 
loss. 
4 The Harris team’s Phase I analysis assumed a Gaussian-pupil soft aperture, although other choices are 
certainly possible.   
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 ξP (ρ
→

') =
πR2

λL
e−k 2 | ρ

→
'| 2 R 2 / 8L2

       (11) 

 
being the normalized target-plane antenna pattern associated with the soft-aperture 

homodyne system.  The second term, nr(ρ
→

), is a zero-mean, real-valued, white Gaussian 
noise process with spectral density 1/4.   It is the whiteness of the measurement noise in 
the homodyne array — in conjunction with the loss of high-spatial frequency target 
information in passage through the soft-aperture entrance pupil — that limits the baseline 
LADAR’s angular resolution.   
 
Performance analysis for the baseline LADAR can be accomplished within the construct 
of semiclassical photodetection theory, even though light is really quantum mechanical 
and photodetection is a quantum measurement.  In semiclassical theory, light is treated as 
a classical (possibly stochastic) electromagnetic field, and the discreteness of the electron 
charge leads to shot noise as the fundamental noise in high-sensitivity photodetection.  
Consequently, the semiclassical theory interprets the noise term in Eq. (10) as the shot 
noise of the strong local oscillator used in the homodyne process.  It has long been 
known, however, that semiclassical photodetection theory is quantitatively correct when 
the quantum state of the illumination falling upon the detector is a Glauber coherent state 
or a classically-random mixture of such states.  Laser light is a classical state, so 
semiclassical theory does, indeed, suffice to treat our baseline sensor quantitatively.  The 
key to Type-2 quantum sensing is the qualitative difference between the semiclassical 
and quantum theories of homodyne detection.  In the quantum treatment of our baseline 
sensor, the noise in Eq. (10) consists of three components:  quadrature quantum noise 
from the target return, plus vacuum-state quantum noise associated with the attenuation 
incurred at the soft aperture, plus vacuum-state quantum noise associated with inefficient 
(η < 1) homodyne detection.  As shown in Figure 4, the use of squeezed-vacuum 
injection and phase-sensitive amplification can reduce the noise level in which the image 
term in the homodyne output is embedded.  Specifically, using spatially-broadband SVI 
with squeeze parameter r and spatially-broadband PSA with quadrature-power gain Geff 
the quantum image enhancer changes Eq. (10) into 
 

yr(ρ
→

) = Re ηGeff ET∫
πR2

2λL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξT (ρ

→

')ξP (ρ
→

− ρ
→

')T(ρ'
→

)d ρ
→

'
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + nr(ρ

→

), (12) 

where nr(ρ
→

) is now a zero-mean, real-valued Gaussian random process with spectral 
density 
 

 Snr nr
( f

→
) =

ηGeff

4
| P(λL f

→
) |2 +(1− | P(λLf ) |2)e−r⎛ 

⎝ 
⎞ 
⎠ +

1− η
4

.   (13) 
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The first term in parentheses in Eq. (13) is the quantum noise contributed by the target-
return light.  The second term in parentheses is the quantum noise that is due to the 
squeezed-vacuum injection (r > 0 is the squeeze parameter). The term outside the 
parentheses is the quantum noise contributed by the sub-unity homodyne efficiency.  
 
 

 
Figure 4: Notional schematic of squeezed-vacuum injection plus phase-sensitive 

amplification, viz., the quantum image enhancer block from Figure 2 
 
When Geff = 1 and r = 0, there is neither phase-sensitive amplification nor squeezed-
vacuum injection and Eq. (13) reduces to the noise spectrum of the baseline sensor.  
However, with r > 0, the noise injected by the soft-aperture attenuation at high spatial 
frequencies is reduced.  Furthermore, with Geff > 1, the significance of the noise injected 
by sub-unity homodyne efficiency is reduced.  Together, they provide quantum image 
enhancement in that the attenuated high spatial-frequency components of the image-
bearing term in Eq. (12) are more readily discernible from this reduced noise level. 
 
To clearly demonstrate the resolution improvement afforded by SVI plus PSA Type-2 
quantum sensing, the Harris team analyzed a hypothesis testing scenario in which the 
target return was equally likely to be from an on-axis point target or from two equal-
strength point targets placed symmetrically about the optical axis.  For the assumed 
Gaussian soft-aperture pupil function, the Rayleigh-resolution angle is θ (Ray) = 0.6λ /R. 
We considered targets that gave specular returns and those that gave fully-developed 
speckle returns, concentrating on the latter because they are more appropriate to LADAR 
wavelengths ( λ ≈1 μm) owing to the quasi-Lambertian reflection from typical targets.  
Using a likelihood-ratio test, we derived the minimum error probability decision rule and 
calculated its error probability as a function of the angular separation between the two 
targets and the signal-to-noise ratio (SNR).5  Details of our derivations can be found in 
[6]-[8].  Angular resolution was then defined to be the angular separation at which the 

                                                 
5 SNR is defined to be the average number of detected signal photons in the measurement interval, even 
when we consider the quantum enhancement provided by SVI and PSA.  Both target hypotheses are 
assumed to give the same SNR. 
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error probability fell below a chosen threshold value (0.03 in the figures that follow).   
Figure 5 shows an example of the speckle-target results that we have obtained, see 
[9],[10] for more details.  The black dots in this figure plot the resolution angle for the 
baseline sensor, with η = 0.25 homodyne efficiency, as a function of the SNR, for the 
baseline sensor.  The green dots in Figure 5 show an SVI-enhanced receiver and the pink 
dots show an SVI+PSA enhanced receiver.  The unresolved regions in Figure 5 refer to 
regimes in which the resolution diverges.  At high SNR values this resolution scales as 
θ(Res) ∝ SNR−3 /10.  Angular resolution diverges below a threshold SNR, 20 dB in this 
example, because the signal energy is then insufficient to discriminate between the one-
target and two-target hypotheses, regardless of the angular separation of the latter. 
 

 

 
Figure 5: Normalized angular resolution versus SNR for 0.25η =  homodyne 

efficiency 
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To assess the resolution improvement afforded by the proposed SVI+PSA Type-2 sensor, 
we then analyzed a LADAR enhanced by SVI and PSA in this same formalism.  The 
green dots in Figure 5 show the case of 0.25η =  homodyne efficiency with 15 dB of SVI 
but no PSA.  The low homodyne efficiency contributes a large amount of vacuum-state 
quadrature noise that kills the advantage offered by SVI.  The pink dots show the case in 
which there is 15 dB of SVI and a 9.3 dB PSA gain G.6  In this case, one sees a 
significant improvement in the resolution at all SNR values.  Moreover, when 12 dB < 
SNR < 20 dB, the baseline sensor’s resolution diverges, whereas the SVI plus PSA 
quantum sensor maintains very good resolution. 
 
The angular resolution improvement provided by the Harris team’s Type-2 quantum 
sensor can be quantified by considering the effective shift in SNR of the resolution curve 
relative to that of the classical baseline sensor.  For the example plotted in Figure 5, this 
SNR shift is 11.5 dB.  To obtain a systematic understanding of this angular resolution 
improvement, we calculated the SNR shift for several values of η � and the PSA gain G. 
Figure 6 shows, as expected, that SVI alone only gives a significant SNR shift at high 
values of the homodyne efficiency.  As η � decreases, the SVI-only system loses its 
advantage (green curve), but this advantage is restored when PSA is used in conjunction 
with SVI.  In the limit of very low η  the improvement is largely governed by the PSA 
gain, which can, in principle, shift the SNR curve by up to 1/η  (black curve). 
 

 

 
Figure 6:  Effective SNR shift (relative to the baseline sensor) for 15 dB SVI plotted 

versus homodyne efficiency η  for various values of the PSA gain G 
 

                                                 
6 Strictly speaking, G is the gain of the PSA device when it is used as a phase-insensitive amplifier, but we 
will refer to it as the PSA gain.  In terms of G, we have that the PSA quadrature power gain is 
Geff = G + G −1( )2

. 
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2.3.2 Modulation Transfer Function and Simulated Imagery 

The Harris team supplemented its hypothesis-testing resolution analysis with image 
simulations based on our understanding of the modulation-transfer function (MTF) and 
noise spectral density of the baseline and quantum-enhanced sensors.  For these 
simulations we modified the assumed setup to include 50/50 beam splitting prior to a pair 
of identical soft-aperture homodyne receivers that are arranged to measure the real and 
imaginary quadratures, respectively.7  Coherent combining of their outputs then yields 
the following complex-valued baseband random process after matched filtering for the 
transmitter’s pulse shape:8 
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where n(ρ
→

) is a zero-mean, complex-valued, isotropic Gaussian noise process with 
spectral density 
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For a speckle target we have that T(ρ'
→

)  can be taken to be a zero-mean, complex-valued, 
isotropic Gaussian random process with correlation function 
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where the target’s average intensity reflectivity,   T (ρ1

→

'), is what the sensor is trying to 
image.   
 
The physical content of the preceding analysis — and hence the core concept of our 
Type-2 quantum image enhancer — is illustrated in Figs. 7-9, where, for convenience, 
the figures have been drawn for a 1-D soft-aperture LADAR viewing a target yielding a 
baseband complex envelope at the receiver with spatial-frequency spectra S( f ) 2  and 
Sn ( f )  arising from its signal (image) and noise components, respectively.9  Figure 7 
shows a pictorial representation of how phase-sensitive amplification can recover the 
SNR that is lost because of sub-unity homodyne efficiency.  Figure 8 shows how 
squeezed-vacuum injection can recover the SNR that is lost at high spatial frequencies 
                                                 
7 The details of this configuration, the derivation of the modulation transfer results summarized below, and 
an extensive set of simulation results plus accompanying explanations appear in [11]-[13]. 
8 Equations (14) and (15) are written for the SVI plus PSA system.  The baseline sensor results are 
recovered by setting Geff = 1 and r = 0, where the first condition turns off the PSA and the second turns off 
the SVI. 
9 The definitions of these signal and noise spectra — along with the normalization convention that is 
employed in Figures 7-9 — are given in [13].   
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because of the soft-aperture attenuation if the receiver has unity homodyne efficiency.  
Figure 8 also shows how SVI loses its effectiveness, in this regard, at low homodyne 
efficiency.  Figure 9 shows how combining SVI with PSA can recover the SNR that is 
lost at high spatial frequencies because of the soft-aperture attenuation despite there being 
sub-unity homodyne efficiency.  For additional details see [13]. 
 
Using this analysis we carried out MATLAB® simulations to establish the subjective 
imaging benefits afforded by SVI plus PSA when viewing a speckle-limited USAF test 
target pattern.  Our simulations confirmed the resolution predictions found for the point-
target hypothesis testing problem.  Figure 10 depicts two 100-frame-averaged images 
(i.e., each image is averaged over 100 independent speckle shots) from simulations both 
taken at –3.3 dB single-frame SNR:  the left is a baseline sensor image, and the right is a 
quantum sensor image with 15 dB SVI and 10 dB PSA gain showing a combined 10× 
resolution-cell improvement over the baseline sensor. The red boxes in Figure 10 
highlight the smallest resolvable slit spacing in each case. 
 

 

 
Figure 7: Pictorial representation of the value of PSA in compensating for low 

homodyne efficiency 
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Figure 8: Pictorial representation of the value of SVI in compensating for the loss of 

high spatial frequency information caused by soft-aperture attenuation and the 
reduction in SVI effectiveness at low homodyne efficiency 

 
 

 
Figure 9: Pictorial representation of the value of SVI plus PSA in compensating for 
the loss of high spatial frequency information caused by soft-aperture attenuation in 

the presence of low homodyne efficiency. 
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Figure 10: Simulated images of a USAF test pattern with the baseline sensor (left) 

and the SVI+PSA quantum sensor (right) 
 

2.4 Quantum Illumination 

The Harris team’s work on quantum illumination — a Type-3 sensing system — 
stemmed from Lloyd’s proof [14] that a large performance gain accrues from the use of 
entanglement in single-photon target detection within a lossy, noisy environment when 
compared to what can be achieved with unentangled single-photon states.  The analysis in 
[14] was confined to a regime in which at most one photon arrives at the receiver from 
each LADAR transmission, regardless of whether the object of interest is absent or 
present.  In order to understand whether or not quantum illumination could satisfy the 
requirements of the DARPA Quantum Sensors Program — or other sensing problems of 
DoD interest — Lloyd’s work first had to be converted to a form that could account for 
arbitrary photon fluxes.  In what follows we will summarize the results we have obtained, 
in this regard, which span target detection, angular resolution, and secure communication.  
We will also show how our quantum illumination systems avoid the Type-3 No-Go 
Theorem from Section 2.2 but may fall prey to a practical no-go condition.   



22 

2.4.1 Quantum Illumination for Improved Target Detection 

Consider the following LADAR target-detection problem.  The transmitter emits a pulse 
that interrogates a particular azimuth-elevation-range bin in which a target may, or may 
not, be present with equal probability for both hypotheses.  Regardless of whether the 
target is present, the LADAR receiver will collect isotropic Gaussian noise originating 
from the interrogated bin.  The LADAR’s task is to make a minimum error probability 
decision as to whether the target is absent or present.  In a conventional LADAR system, 
the transmitter emits a coherent-state pulse.  In the quantum-illumination LADAR, the 
transmitter emits a T-sec-long pulse from the signal-port output of a continuous-wave 
(cw) spontaneous parametric downconversion (SPDC) source with W Hz phase-matching 
bandwidth, while retaining the accompanying idler pulse for use in conjunction with the 
light returned from azimuth-elevation-range bin under interrogation.  In [15] we have 
reported exponentially-tight bounds on the error probabilities for optimum reception in 
the conventional and quantum-illumination LADARs.  The essence of that analysis is 
summarized below.   
 
Let { }ˆ ˆ, :1

m mS Ia a m M≤ ≤  be the photon annihilation operators for the M = W T signal-

idler mode pairs that comprise the SPDC transmitter’s output.  These mode pairs are in 
independent identically distributed (iid), zero-mean, maximally-entangled Gaussian states 
with average photon number per mode NS << 1.  The return modes from the target bin 
will have photon annihilation operators { }ˆ :1

mRa m M≤ ≤  given by ˆ a Rm
= ˆ a Bm

 when the 

target is absent (hypothesis H0 ), and ˆ a Rm
= κ ˆ a Sm

+ 1−κ ˆ a Bm
 when the target is present 

(hypothesis H1).  Here, κ << 1 is the transmitter-to-target-to-receiver coupling when the 
target is present, and the background-light modes,{ }ˆ

mBa , are in iid, zero-mean isotropic 

Gaussian states with average photon number NB  under hypothesis H0  and NB /(1−κ ) 
under hypothesis H1.

10  Because the performance advantage of SPDC quantum 
illumination arises in scenarios that are both lossy and noisy, we shall assume that 
NB >> 1, even though this is not the case at LADAR wavelengths unless the system is 
being actively jammed.11  The hypothesis-testing setup for the conventional LADAR 
system is identical to that of the quantum-illumination system with one exception:  the 
transmitter emits signal modes { }ˆ :1

mSa m M≤ ≤  that are in coherent states with average 

photon number per mode NS << 1.     
 

                                                 
10 These choices for the background light’s average photon number under the two hypotheses preclude the 
presence of a passive signature in the light collected from the chosen azimuth-elevation-range bin.   
11 Our NB >> 1 assumption will be satisfied, however, in the microwave region.   
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In this lossy (κ << 1), noisy ( NB >> 1), low-brightness ( NS << 1) regime we have 
obtained the following bounds on the error probabilities achieved by the quantum-
illumination (QI) and coherent-state (CS) LADARs: 
 

 Pr e( )QI ≤
exp −MκNS /NB( )

2
       (17) 

 

 Pr e( )CS ≤
exp −MκNS /4NB( )

2
.      (18) 

 
The coherent-state bound is a Chernoff bound, and is therefore exponentially tight, i.e.,  
 
 lim

M →∞
−ln 2Pr(e)CS[ ]/ M[ ]= κNS /4NB ,      (19) 

 
whereas the quantum-illumination bound is a weaker Bhattacharyya bound.  Comparison 
of Eqs. (17) and (18) suggests that the quantum-illumination LADAR can achieve the 
same performance as the coherent-state LADAR with 6 dB (factor-of-four) fewer 
photons.  Further support for the advantageous behavior of quantum illumination derives 
from the lower bound 
 

 Pr e( )CS ≥
exp −MκNS /2NB( )

4
,      (20) 

 
which applies in the lossy, noisy, low-brightness regime when MκNS /2NB >> 1.  This 
result shows that quantum illumination is at least 3 dB superior, in error exponent, to the 
coherent-state LADAR.  Moreover, as shown in [15], Eq. (20) bounds the performance of 
all classical-state LADARs in this operating regime.   
 
The preceding performance results presume that optimum quantum receivers are used by 
both the coherent-state and quantum-illumination LADARs.  Homodyne reception has 
been shown to be a good approximation to the optimum quantum receiver for the 
coherent-state LADAR in the lossy, noisy operating regime we are considering, but no 
explicit implementation has been found, as yet, for the quantum-illumination LADAR’s 
optimum quantum receiver.  We have shown [16], however, that an optical parametric 
amplifier (OPA) can be used to implement a receiver that can achieve 
 

 Pr e( )OPA ≤
exp −MκNS /2NB( )

2
      (21) 

 
when κ << 1, NB >> 1, and NS << 1, which is an error exponent that is 3 dB better than 
that of the coherent-state LADAR’s Chernoff bound, thus closing half the performance 
gap between the optimum quantum receiver for the coherent-state LADAR and the 
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optimum quantum receiver for the QI LADAR.  The OPA receiver works by applying the 
return mode and idler mode to the OPA’s idler and signal input ports, respectively, and 
performing photon counting on the OPA’s signal-port output.  By tuning the OPA gain to 
its optimal value, which turns out to be near unity, we obtain the error bound in Eq. (21).  
An explicit comparison of our error probability results — obtained without assuming the 
asymptotic κ << 1, NB >> 1, and NS << 1 conditions — is presented in Figure 11; see 
[16] for more details.  The blue-shaded region in Figure 11 lies between the Chernoff 
upper bound and the lower bound on error probability of the coherent-state LADAR’s 
optimum receiver, with the lower bound also applying to any classical-state LADAR.  
The pink shaded region lies between the Bhattacharyya upper bound and the lower bound 
on the error probability of the quantum-illumination LADAR’s optimum receiver.  Also 
shown are the error probability for a coherent-state LADAR that uses homodyne 
reception, and that for a quantum-illumination LADAR that uses an optical parametric 
amplifier (OPA) receiver.  All the results assume that κ = 0.01, NS = 0.01, and NB = 20. 
Here we see that there is a definite region in which the quantum-illumination LADAR’s 
optimum receiver has an error probability that is substantially lower than that of any 
classical-state LADAR.  Moreover, Figure 11 shows that quantum illumination with OPA 
reception outperforms coherent-state operation with homodyne reception, which is 
known to approximate the optimum quantum receiver for this LADAR in the lossy, noisy 
operating regime.  Note that the target-detection performance advantage we have found 
for quantum-illumination LADAR, as compared to classical-state systems of the same 
average transmitted photon number, does not conflict with the Type-3 No-Go Theorem 
we stated in Section 2.2 because that theorem does not encompass the low-brightness 
( NS << 1) high mode-number (M>>1) region of interest for quantum illumination.  
Indeed, the Bhattacharyya bound for the quantum-illumination LADAR in the lossy, 
noisy regime with a high-brightness ( NS >> 1) source, has the same error exponent as the 
coherent-state LADAR of the same average transmitted photon number.  
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Figure 11: Target-detection performance comparison between coherent-state and 

quantum-illumination LADARs 
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2.4.2 Quantum Illumination for Improved Angular Resolution 

Paralleling the development of one-versus-two target angular resolution that we 
performed for its SVI plus PSA Type-2 LADAR, the Harris team extended the 
comparison between quantum-illumination and conventional LADAR systems to this 
angular resolution scenario.  The two equally-likely hypotheses are H1, the LADAR 
return comes from an on-axis specular point target, and H2 , the LADAR return comes 
from a pair of equal strength, in-phase specular point targets that are symmetrically 
disposed about the optical axis.  Under both hypotheses the channel is very lossy, i.e., the 
transmitter-to-target-to-receiver coupling coefficient satisfies κ << 1.  The channel is also 
very noisy, viz., in addition to their target reflections, the received modes contain iid 
zero-mean isotropic Gaussian noise with average photon number NB >> 1.  The full 
characterization of this hypothesis test appears in [17], with a calculation approach — for 
finding the Chernoff bounds on the error probabilities of coherent-state and quantum-
illumination LADARs — that employs the symplectic decomposition technique 
described in [15] for the target-detection case.  So far, however, we have been unable to 
develop analytic results for the Chernoff-bound error exponents of either LADAR.  
Nevertheless, our numerical evaluations indicate that, as in the case of target detection, a 
substantial reduction in error probability is obtained from a quantum-illumination system 
that uses the same average transmitted photon number as its coherent-state counterpart.  
Figure 12 shows an example of this performance advantage by plotting the Chernoff 
bounds versus the number of mode pairs, M, that are employed.  In Figure 12 the one-
target hypothesis is an on-axis specular point target.  The two-target hypothesis is a pair 
of equal-strength, specular point targets that are at angles ±θ  with respect to the optical 
axis that together return the same average photon number as the single target.  All the 
results are quantum Chernoff bounds that assume κ = 0.01, NS = 0.01, NB = 20, and a 
hard-aperture receiver entrance pupil of diameter D. 
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Figure 12: One-versus-two target discrimination performance comparison between 

coherent-state (blue curves) and quantum-illumination (red curves) LADARs 
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Three additional points are worth noting at this juncture.  First, the error probability 
advantage afforded by quantum illumination will translate into an improvement in 
angular resolution, as illustrated in Figure 13 for a different choice of system and 
propagation parameters.  Here we have lowered the average photon number of the 
background from the value used in Figure 12, although NB  is still much larger than what 
will prevail — in the absence of jamming — at LADAR wavelengths.  In Figure 13 the 
results are plotted versus the average received photon number that is due to the target (or 
targets) divided by the average received photon number from the background.  There is a 
1.5× enhancement in angular resolution when /S BN Nκ  = -32 dB. We have also chosen 
a range of values for NS  that extends beyond the low-brightness regime.  This choice was 
made partly to reduce the required mode number M — and hence the pulse duration for a 
given SPDC phase-matching bandwidth — and partly to illustrate quantum-
illumination’s loss of performance advantage in the high-brightness regime.  Second, we 
again avoid the Type-3 No-Go Theorem from Section 2.2 because Figs. 12 and 13 
employ M>>1 mode pairs.  Finally, unlike our SVI plus PSA Type-2 sensor, the quantum 
illumination system considered here obtains its resolution improvement with a hard-
aperture pupil.  Of course, we have not shown that quantum illumination can cope with 
the 100 dB loss that may be present in the Figure 1 LADAR scenario, nor have we 
evaluated its resolution improvement for targets that produce fully-developed speckle 
returns.  Nevertheless, there may be some scenarios in which quantum illumination 
imaging sensors could provide useful performance improvements over conventional 
systems, when compared at equal average transmitted photon number.  However, as we 
shall discuss in Section 2.4.4, any enthusiasm for that possibility must be tempered by the 
practical no-go conditions that we have identified in our Phase I work. 

 
 

 
Figure 13: Angular resolutionθ , defined by Pr(e)= 0.03 one-versus-two target 
discrimination error probability and normalized by the diffraction scale λ /D 
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2.4.3 Quantum Illumination for Secure Communication 

The remarkable feature about the quantum illumination results we have presented in 
Sections 2.4.1 and 2.4.2 is that significant performance advantages accrue from the use of 
an entangled-state source despite the fact that the channel — from the transmitter to the 
target and back to the receiver — destroys this entanglement.  Indeed, consider the case 
of quantum-illumination target detection.  The signal-idler mode pairs produced by SPDC 
are in iid, zero-mean, jointly Gaussian states with the common Wigner-distribution 
covariance matrix 

 
  

       ΛSI =
1
4

2NS +1 0 2 NS NS +1( ) 0

0 2NS +1 0 −2 NS NS +1( )
2 NS NS +1( ) 0 2NS +1 0

0 −2 NS NS +1( ) 0 2NS +1
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⎦ 

⎥ 
⎥ 
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⎥ 
⎥ 

.   (22) 

 
When the target is present (hypothesis H1), the return-idler mode pairs are also in iid, 
zero-mean, jointly Gaussian states12 whose common Wigner-distribution covariance 
matrix is now given by  
 

ΛRI =
1
4

2κNS + 2NB +1 0 2 κNS NS +1( ) 0

0 2κNS + 2NB +1 0 −2 κNS NS +1( )
2 κNS NS +1( ) 0 2NS +1 0

0 −2 κNS NS +1( ) 0 2NS +1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

.  (23) 

 

                                                 
12 Gaussian states retain their Gaussian character under linear transformations, and our transmitter-to-
target-to-receiver transformation is linear, with inputs — the signal-idler mode pairs and the background 
light — that are in Gaussian states.   
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The non-zero off-diagonal terms in Eqs. (22) and (23) represent phase-sensitive cross 
correlations, while the vanishing of the other off-diagonal elements indicates that these 
states have no phase-insensitive cross correlations.  It is known that the strength of such 
phase-sensitive cross correlations is limited by the values of the diagonal entries in the 
Wigner-covariance matrix.  Thus, Eq. (22) is a maximally-entangled state because it 
saturates the quantum-mechanical upper limit, NS NS +1( )/2, on the magnitude of the 
phase-sensitive cross correlations.  Moreover, in the low-brightness regime, wherein 
NS << 1 prevails, the magnitudes of these phase-sensitive cross correlations greatly 
exceed their classical upper limit NS /2.  On the other hand, when NB ≥ κ  holds, the 
magnitudes of the phase-sensitive cross correlations in Eq. (23) lie at or below the 
classical-state upper limit.  Then, because these are Gaussian states, it turns out that they 
are classical and hence cannot be entangled.13   
 
It is now possible to see why quantum illumination works in a lossy, noisy, 
entanglement-destroying environment when the SPDC source operates at low brightness.  
If NS << 1, then the magnitude of the ensuing phase-sensitive cross correlations between 
the target return and the idler, although within classical-state limits, greatly exceeds what 
any classical source is capable of producing, viz., the former will be approximately 

/ 2SNκ , whereas the maximum the latter can provide is the much smaller κ NS /2.   
 
Having understood this underlying explanation for the benefits of quantum illumination, 
we have used that knowledge to conceive a new protocol for secure communication in the 
presence of passive eavesdropping.  The basic construct is shown in Figure 14 where the 
relevant annihilation operators are shown on each propagation path.  Full details appear 
in [18],[19], so we shall content ourselves here with a brief description of the system, its 
performance, and related future avenues for research.   
 

                                                 
13 Physically, adding iid, zero-mean, isotropic Gaussian noise of average photon number NB /κ  to the 
signal mode at the SPDC source will produce the output state characterized by Eq. (23) when there is no 
additional background injected by the channel.  Thus what we have is a signal-idler classicalization that 
only needs to add at least one noise photon per signal mode to classicalize the maximally-entangled state, 
cf. the Classicalization Theorem and the Type-3 No-Go Theorems from Section 2.2.   
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Figure 14: Configuration for defeating passive eavesdropping via quantum 

illumination 
 

As in the quantum illumination LADARs considered in previous subsections, Alice’s 
SPDC source in Figure 14 produces a T-sec-long pulse comprising M = WT iid, zero-
mean, maximally-entangled, signal-idler mode pairs.  She sends her signal modes to Bob, 
through a pure-loss channel of transmissivity κ  in which the eavesdropper (Eve) collects 
all the light that does not reach him, while retaining her idler modes for future use.  Bob 
imposes binary phase-shifted keyed (BPSK) modulation on his received signal pulse, 
passes it through a phase-insensitive amplifier — with gain G and output-noise average 
photon number  NB + 1— and sends the resulting light back to Alice through the same 
transmissivity-κ  pure-loss channel.  Eve gets all the light sent by Bob that does not reach 
Alice. 
 
We have derived the Chernoff bounds for the error probabilities of Alice and Eve’s 
optimum quantum receivers, along with a lower bound on the error probability of Eve’s 
optimum quantum receiver and the Bhattacharyya bound on Alice’s OPA receiver.  In the 
lossy (κ << 1), low-brightness ( NS << 1), high-noise ( 1BNκ >> ) regime we have found 
the following simple asymptotic forms for these error probability bounds: 
 

 Alice
exp( 4 / )Pr( )

2
S BM GN Ne κ−

≤       (24) 

 

 Pr(e)Eve ≤
exp(−4Mκ (1−κ )GNS

2 /NB )
2

     (25) 

 

 Pr(e)Eve ≥
1− 1− exp(−8Mκ (1−κ )GNS

2 /NB )
2

    (26) 
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 OPA
exp( 2 / )Pr( )

2
S BM GN Ne κ−

≤ .      (27) 

 
These results show that despite Eve’s receiving the lion’s share of the photons sent by 
Alice to Bob and by Bob to Alice, the Chernoff bound error exponent on her optimum 
quantum receiver will be substantially inferior to the Bhattacharyya bound error exponent 
of Alice’s OPA receiver because 2NS /(1−κ ) << 1.  An explicit example of our error 
probability bounds — calculated numerically for the case NS = 0.004, κ = 0.1, 
G = NB = 104  without using the asymptotic approximations employed in deriving Eqs. 
(24)-(27) — is shown in Figure 15.  Solid curves in Figure 15 are Chernoff upper bounds 
on Alice and Eve’s optimum quantum receivers.  Dashed curve is the lower bound on 
Eve’s optimum quantum receiver.  Dot-dashed curve is the Bhattacharyya bound on 
Alice’s optical parametric amplifier (OPA) receiver.   
 

 

 
Figure 15: Error probability bounds for κ = 0.1, NS = 0.004 , G = NB = 104 plotted 

versus the number of SPDC mode pairs 
 
Several final points are worth noting in conjunction with this communication scheme.  
First, it is a phase-sensitive system, so Alice’s receiver will require phase coherence that 
must be established through a tracking system.  Second, there is a path-length versus bit-
rate tradeoff.  Operation must occur in the low-brightness regime.  So as the channel’s 
transmissivity decreases, Alice must increase her mode-pair number M to maintain the 
same error probability at a fixed NS  value.  With W = 1 THz, and T = 20 ns, so that M = 
WT = 2 ×104 , the case shown in Figure 15 will yield 50 Mbit/s communications with 
Pr(e)OPA ≤ 5.09 ×10−7 and 0.285 ≤ Pr(e)Eve ≤ 0.451 when Alice and Bob are linked by 50 
km of 0.2 dB/km loss optical fiber and the rest of their equipment is ideal.  Although this 
example indicates that Alice and Bob enjoy tremendous immunity to a passive Eve, to 
make the Figure 14 system unconditionally secure Alice and Bob must take steps to 
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defeat Eve’s use of impersonation attacks, man-in-the-middle attacks, and optical probing 
of Bob’s BPSK modulator.  We believe that these attacks can be identified and dealt with 
if Alice and Bob employ authentication, monitor the physical integrity of the 
communication channel, check the received power level and its frequency spectrum at 
Bob’s station, and verify the error probability at Alice’s station.  Substantiating that belief 
will be the subject of future research.   

2.4.4 Practical No-Go Conditions for Quantum Illumination 
The Type-3 No-Go Theorem from Section 2.2 is not in conflict with the quantum-
illumination performance improvements that we have found in the low-brightness, high 
mode-pair number regime because this theorem does not apply there.  While we are still 
working on fundamental go/no-go results for more general cases than those treated by 
that theorem, it is important to note that practical considerations may make quantum 
illumination less attractive as a route to enhanced imaging.  Such practical no-go 
conditions are developed at some length in [5].  Here we shall limit our discussion to the 
most significant of those conditions, which follows immediately from the Classicalization 
and Quantum Measurement-Bound Theorems presented in Section 2.2.   
 
Sections 2.4.1 and 2.4.2 show that Type-3 sensing with an SPDC source can improve 
target detection and angular resolution performance when a quantum-illumination 
LADAR is compared with a coherent-state LADAR that interrogates the target region 
with a transmitter beam of the same average photon number.  The Classicalization 
Theorem implies that essentially the same detection and angular resolution performance 
as the quantum illumination LADAR can be obtained by using the classical signal-idler 
transmitter state obtained by adding iid, zero-mean, isotropic Gaussian noise of unity 
average photon number to every signal and idler mode.  For an M mode-pair system, this 
means that we have a classical-state system, with average transmitted (signal) photon 
number M(NS +1) per pulse, whose performance matches that of the quantum-
illumination LADAR whose average transmitted photon number per pulse is MNS .  Of 
course, the former is much higher than the latter, because we are working at low 
brightness, i.e., NS << 1.  However, for quasimonochromatic operation, the additional 
power required by this classical-state source, W ωh  at center frequency ω , is a trivial 
amount, e.g., 0.13 μ W for a 1THz phase-matching bandwidth at λ = 1.55 μm 
wavelength.  It follows that our interest in quantum illumination for imaging applications 
may need to focus on scenarios — such as those involving low probability of detection, 
low-probability of interception — in which transmitting the absolute minimum amount of 
power is essential.   

2.5 Ghost Imaging 
Ghost imaging is the acquisition of object information by means of photocurrent 
correlation measurements.  Its first demonstration utilized a biphoton source, thus the 
image was interpreted as a quantum phenomenon owing to the entanglement of the 
source photons.  Subsequent experimental and theoretical work demonstrated that ghost 
imaging could be performed with pseudothermal light, i.e., cw laser light that had been 
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transmitted through a rotating ground-glass diffuser.  Whereas the biphoton requires a 
quantum description for its photodetection statistics, pseudothermal light is in a classical 
state whose photodetection statistics can be treated via the semiclassical (shot-noise) 
theory of photodetection.  This disparity has sparked interest in the physics of ghost 
imaging.  Recently [2], we established a Gaussian-state analysis of ghost imaging that 
unified prior work on biphoton and pseudothermal sources.  Our analysis indicated that 
ghost-image formation is intrinsically due to classical coherence propagation, with the 
principal advantage afforded by the biphoton state being high-contrast imagery in the 
wideband limit.  Other recent work [20],[21], however, has offered an alternative 
explanation for pseudothermal-light ghost imaging:  nonlocal two-photon quantum 
interference.  In Section 2.5.1, we will summarize our findings [22] with respect to the 
signal-to-noise ratios (SNRs) of biphoton and pseudothermal ghost imaging.  In Section 
2.5.2 we will summarize our theoretical demonstration [23] that ghost imaging can be 
accomplished with only one detector, viz., the bucket detector that collects a single pixel 
of light which has interacted with the object. As only one light beam and one 
photodetector are required, this imaging configuration cannot depend on nonlocal two-
photon interference. Moreover, it affords background-free imagery in the narrowband 
limit plus a 3-D sectioning capability, and these characteristics have been demonstrated 
in a recent experiment [24].  In Section 2.5.3 we return to the pseudothermal ghost 
imager, and discuss its prospects for achieving high-resolution imagery in the presence of 
atmospheric turbulence. 

2.5.1 Gaussian-State SNR Analysis for Biphoton and Pseudothermal Ghost 
Imaging 

In the absence of pump depletion, continuous-wave SPDC produces signal and idler 
beams that are in a maximally-entangled, zero-mean, jointly Gaussian state with zero 
phase-insensitive cross correlation and maximum phase-sensitive cross correlation.  In 
the low-brightness limit, with photon flux low enough that at most one signal-idler 
photon pair is present within a photodetection measurement interval, this jointly Gaussian 
state reduces to a predominant vacuum state plus a weak biphoton component.  Likewise, 
50/50 beam splitting of pseudothermal light, as is done in pseudothermal ghost imaging, 
results in a pair of light beams that are in a classical, zero-mean jointly Gaussian state 
with a maximum phase-insensitive cross correlation and no phase-sensitive cross 
correlation.    
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Figures 16 and 17, respectively, show the configurations for lensless biphoton and 
pseudothermal ghost imaging of a transmission mask.  In both cases these setups produce 
ghost images because the light beam that has interacted with the transmission mask is 
collected by a single-pixel (bucket) photodetector that affords no spatial resolution, 
whereas the scanning pinhole detector — alternatively a CCD camera — provides spatial 
resolution on the light beam it detects but that light beam has not interacted with the 
object.  Nevertheless, when the outputs from these two detectors are correlated — or, at 
sufficiently low light levels, photon coincidence counting is performed — the resulting 
correlation (or coincidence) pattern, C(ρ1) , contains an image of the mask’s intensity 
transmission T(ρ) 2 .   
 

 

 
Figure 16: Configuration for biphoton ghost imaging of a transmission mask.  PBS 

denotes polarizing beam splitter 
 

 

 
Figure 17: Configuration for pseudothermal ghost imaging of a transmission mask 
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Previously [2] we used Gaussian-state analysis to determine the spatial resolution and 
field-of-view characteristics of both biphoton and pseudothermal ghost imaging by 
evaluating the ensemble average C(ρ1) .  There we considered both their respective 
near-field and far-field regions, i.e., when the measurement-plane cross correlations were 
approximately equal to their source-plane counterparts (near-field operation) and when 
those measurement-plane correlations were appropriate Fourier transforms of the source-
plane correlations.  In all cases we found that classical coherence propagation accounted 
for ghost image formation, with the very strong non-classical phase-sensitive cross 
correlation of the biphoton limit being responsible for the virtual absence of a 
background term in its resulting ghost image.  However, this prior work did not include 
an SNR analysis that would permit determination of the averaging time needed to ensure 
that a time-average correlation measurement gave a high-fidelity replica of C(ρ1) .  This 
task was accomplished during our Phase I Quantum Sensors Program.  Our complete 
results have been published [22], so we will merely illustrate their content here with 
Figures 18 and 19.  The former plots the far-field ghost imaging SNR behavior obtained 
using the maximally-entangled Gaussian-state SPDC source, while the latter shows 
corresponding behavior for the pseudothermal Gaussian-state source.  The abscissa, in 
both figures, is the source brightness at the measurement planes, i.e., the average number 
of photons per spatiotemporal mode.  It is given by PT0ρL

2 /aL
2, where:  P is the photon 

flux of the signal and reference beams in Figs. 16 and 17; T0  is the source coherence 
time; 0/L L aρ λ π=  and 0/La Lλ π ρ=  with a0 and ρ0 << a0 being the source-plane 
intensity radius and coherence radius of the illumination.  The other parameters entering 
into these figures are: TI , the integration time used in time averaging the photocurrent 
cross correlations in Figs. 16 and 17; and ΩB , the baseband bandwidth of the 
photodetectors.  The solid curves in Figure 18 are exact results for three choices of the 
normalized source coherence time.  The dashed and dot-dashed curves give the high-
brightness and low-brightness asymptotes, respectively.  Far-field propagation with a 
broadband (ΩBT0 << 1) source is assumed.  In Figure 19 the solid curves are exact results 
for three choices of the normalized source coherence time.  The dashed and dot-dashed 
curves give the high-brightness and low-brightness asymptotes.  Far-field propagation 
with a narrowband (ΩBT0 >> 1) source is assumed. 
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Figure 18: Normalized SNR versus measurement-plane source brightness for ghost 

imaging with a maximally-entangled Gaussian-state SPDC source 
 

For the SPDC source we have chosen to display the broadband results, i.e., when the 
photodetector’s baseband bandwidth ΩB is much smaller than the source bandwidth 1/T0, 
whereas for the pseudothermal source we have chosen to plot the narrowband results, 
wherein ΩBT0 >> 1.  These conditions represent typical operating regimes for the two 
sources.14  In both cases we find that the SNR increases linearly with source brightness 
when brightness is sufficiently low, and saturates at a value that is independent of source 
brightness when brightness grows without bound.  The SPDC SNR, however, overshoots 
its high-brightness asymptote, while the pseudothermal SNR never does.  Interestingly, it 
turns out that the acquisition time needed for the broadband SPDC source to achieve a 
desired ghost-image SNR may be greater or less than the acquisition time needed for the 
narrowband pseudothermal source to achieve that same ghost-image SNR, depending on 
the values of the system parameters [22].  
 

                                                 
14 Results for the narrowband SPDC case and the broadband pseudothermal case appear in [22].   
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Figure 19: Normalized SNR versus measurement-plane source brightness for ghost 

imaging with a maximally-correlated Gaussian-state pseudothermal source 
 

2.5.2 Computational Ghost Imaging 
Having developed the Gaussian-state theory of pseudothermal ghost-image formation, it 
becomes a simple matter to identify two new configurations for lensless ghost imaging. 
First, rather than use cw laser light transmitted through a rotating ground glass as the 
source of a narrowband, spatially-incoherent light for ghost imaging, we can employ the 
configuration shown in Figure 20.  Here, we transmit a cw laser beam through a spatial 
light modulator (SLM) whose inputs are chosen to create the desired coherence behavior. 
Specifically, we assume an idealized SLM consisting of d × d  pixels arranged in a 
(2K +1) × (2K +1) array with 100% fill factor within a D × D opaque pupil, where D = 
(2K+1)d and K >> 1.  We use this SLM to impose iid random phases on the light 
transmitted through each pixel with coherence time T0  that is long compared to the 
response times of the photodetectors, 1/ΩB .  In this source’s far field, we can expect to 
obtain ghost imagery with field-of-view and spatial-resolution characteristics 
approximating those of the pseudothermal imager with ρ0 ≈ d  and a0 ≈ D.   
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To realize the Figure 20 ghost imager we could use noise generators to drive the SLM, 
but it is more interesting to suppose that deterministic driving functions are employed.  
What we want at the SLM’s output is a narrowband, zero-mean field whose spatial 
coherence — inferred now from a time average, rather than an ensemble average, 
because there is no true randomness — is limited to field points within a single pixel.  
Strong sinusoidal modulation, with different frequencies for each pixel, will work.  This 
deterministically-modulated source will also yield a ghost image of spatial resolution 
comparable to that obtained using the pseudothermal source.   
 

 

 
Figure 20: Configuration for spatial light modulator (SLM) ghost imaging of a 

transmission mask 
 

At this point, the notion of computational ghost imaging — in which we only use the 
bucket detector — is easily understood, see Figure 21.  We use deterministic modulation 
of a cw laser beam to create the field that illuminates the object transparency, and, as 
usual, we collect the light that is transmitted through the transparency with a bucket 
(single-pixel) detector.  Knowing the deterministic modulation applied to the original cw 
laser beam allows us to use diffraction theory to compute the intensity pattern that would 
have illuminated the pinhole detector in the usual lensless ghost-imaging configuration. 
Furthermore, we can subtract the time average of this intensity, in our computation, and 
obtain the equivalent of the zero-mean intensity variation.  To distinguish these computed 
values from actual light-field quantities, we put tildes on them.  The time average 
correlation function, Δ ˜ C (ρ1) , will then be a background-free ghost image with spatial 
resolution and spatial extent akin to what would be obtained from pseudothermal ghost 
imaging with ρ0 ≈ d  and a0 ≈ D, and a DC block applied to the pinhole detector.  Now, 
because only one photodetector has been employed, it is impossible to interpret this 
computational ghost image as arising from nonlocal two-photon interference.   
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In addition to obviating the need for a high spatial-resolution detector in ghost-image 
formation, at the expense of the computational burden associated with the free-space 
propagation calculation for the reference-arm field, computational ghost imaging permits 
3-D sectioning to be performed.  To see that this is so, we return to the pseudothermal 
ghost-imaging configuration from Figure 17 and evaluate its depth of focus, i.e., the ΔL  
value at which the ghost image becomes significantly blurred when the object is at z = L 
but the pinhole detector is at z L L= + Δ .  This turns out to be 2 2

02 /L L aλ πΔ = , which, in 
the near-field of the pre-diffuser laser beam, is a very small fraction of the source-to-
object path. This limited depth of focus has the following implications when a range-
spread opaque object is imaged in reflection.  The pseudothermal ghost imager can only 
image one focal region at a time.  However, because the computational ghost imager can 
precompute Δ˜ I 1(ρ1, t)  for a wide range of propagation distances, the same bucket-detector 
photocurrent can be correlated with many such Δ˜ I 1(ρ1, t)  to perform 3-D sectioning of the 
object’s reflectance.  Of course, this sectioning further increases the computational 
burden, but this burden can be handled off-line, and, for a given SLM and its associated 
modulation waveforms, the same precomputed Δ˜ I 1(ρ1,t)  can be used for all ghost images 
formed using that system.   
 

 

 
Figure 21: Configuration for computational ghost imaging of a transmission mask 

 
More information about the theory of computational ghost imaging appeared in [23], with 
initial experimental confirmation — by the Y. Silberberg group from the Weizmann 
Institute — being presented in [24].   
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2.5.3 Potential for Achieving Turbulence Immunity with Pseudothermal Ghost 
Imaging 

LADAR imagers — whether classical or quantum — that are employed in clear-weather 
atmospheric conditions are subject to resolution loss that is due to atmospheric 
turbulence, i.e., the random refractive-index fluctuations that are associated with 
turbulent mixing of air parcels with ~1 K temperature variations [25].  Owing to its novel 
cross-correlation approach to image formation, it is germane to ask whether 
pseudothermal ghost imaging affords any immunity to this turbulence-induced resolution 
loss, as standard LADAR theory is not directly applicable to this case.  Figure 22 shows 
the configuration of interest, viz., the pseudothermal ghost imaging setup from Figure 17 
with atmospheric turbulence potentially present in both the signal and reference paths.15  
  

 

 
Figure 22: Pseudothermal ghost imaging in the presence of atmospheric turbulence 

 
Using the extended Huygens-Fresnel principle [25] to account for the turbulence, we 
have extended our previous ghost-image resolution analysis [2] to encompass five 
versions of the Figure 22 scenario, namely: 
 

1.  turbulence only between the object and the bucket detector 
2.  identical turbulence on both the transmitter-to-bucket and transmitter-to-pinhole 

paths 
3.  statistically identical turbulence on both the transmitter-to-bucket and transmitter-

to-pinhole paths 
4.  turbulence only between the transmitter and the bucket detector 
5.  turbulence only between the transmitter and the pinhole detector. 

 
                                                 
15 Similar results can be developed for biphoton ghost imaging in the presence of turbulence.   
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The results we have obtained — for the typical far-field propagation operating regime of 
pseudothermal ghost imaging with a source diameter that exceeds the turbulence 
coherence length — are as follows. 
 

1.  There is no loss of resolution when the turbulence is only present between the 
object and the bucket detector. 

2.  There is no loss of resolution when identical turbulence is present on both the 
transmitter-to-bucket and transmitter-to-pinhole paths. 

3.  Resolution is turbulence limited when statistically identical turbulence is present 
on both the transmitter-to-bucket and transmitter-to-pinhole paths. 

4. Resolution is turbulence limited when turbulence is only present between the 
transmitter and the bucket detector 

5. Resolution is turbulence limited when turbulence is only present between the 
transmitter and the pinhole detector.   

 
The first two cases on this list do not represent realistic operating conditions for ghost 
imaging in the Figure 1 LADAR scenario.  It is exceedingly unlikely that the only 
turbulence to be encountered would be between the object and the bucket detector.  Even 
more difficult to imagine is a LADAR scenario in which the exact same turbulence 
realization, i.e., the exact same amplitude and phase disturbances, would be present on 
the signal and reference paths.  The last three cases on the preceding list are possible 
LADAR scenarios, but none offer immunity to atmospheric turbulence.  Indeed, case 3, 
which is the most likely case, has a turbulence-limited resolution that is worse than those 
of cases 4 and 5.    
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3.0 ANGLE-ANGLE PROOF-OF-CONCEPT EXPERIMENTS 

In this section we describe the proof-of-concept experiments undertaken at Northwestern 
University in support of Harris Team’s sensor concept. The goal was to demonstrate two 
key points in our quest to achieve angle-angle resolution beyond the shot-noise-limited 
performance: 1) that shot-noise-limited imaging can be performed in the lab with 
available detector arrays and quantitative comparisons between experimental results and 
theoretical predictions can be made in a one-versus-two-target hypothesis testing 
scenario; and 2) that phase-sensitive amplification can be performed with available 
nonlinear crystals and pump lasers to achieve signal-gain values large enough to 
overcome detection-inefficiency-induced degradation in image resolution. In the latter 
context, theoretical work was also performed by the University of Texas, Arlington team 
members to enable quantitative comparisons between the experimental results and 
predictions of a model of the phase-sensitive parametric amplification process in a 
second-order nonlinear crystal pumped with an inhomogeneous beam profile.  

3.1 Experimental Demonstration of a High-Gain PSA 
A PSA works by amplifying only the in-phase component of the input signal and noise—
while at the same time attenuating the quadrature components—and thus it is capable of 
preserving the signal-to-noise (SNR) of the input signal. At large gains, a PSA provides a 
noise factor (SNRout/SNRin) approaching one, which is two times better than what a 
phase-insensitive amplifier (PIA) can do [26]. Such a device has been shown to be useful 
for noise-free image amplification in previous Northwestern University experimental 
work [27].  
 
In the context of resolution enhancement of an optical imaging system, the resolution is 
intrinsically tied to the SNR of the detected signal. Since imperfect detection (less-than-
unity quantum-efficiency) degrades the measured SNR, this problem can be alleviated by 
the use of a PSA before detection. Phase-sensitive pre-amplification of the received 
signal in effect improves the overall detection efficiency of the system, as described in 
Section 2.3.1.  More importantly, a PSA is also an indispensable component in Harris 
Team’s quantum sensor concept involving SVI because of the rapid degradation of the 
squeezed vacuum in the presence of post-SVI detection losses. 
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The layout of the PSA imaging experiment is illustrated in Figure 23. High-extinction-
ratio 1560-nm optical pulses of 160 ps pulse duration were generated at a repetition rate 
of 10 MHz from a homemade electronic pulse-carving system. The optical pulse train 
was subsequently amplified with a 5 W Erbium-doped fiber amplifier (EDFA) to produce 
kilowatts peak-power optical pulses [28]. The 1560 nm pulses were used to generate high 
peak power pulses at 780 nm via second harmonic generation (SHG) in a 20 mm 
periodically-poled potassium-titanyl-phosphate (PPKTP) crystal. We were able to 
generate close to 3 W of 780 nm beam with better than 60% conversion efficiency in the 
up-conversion process, as shown in Figure 24. The SHG performance was mainly limited 
by the nonlinear effects in the high power EDFA, which was apparent when pulses of 
shorter duration (higher duty cycle) were used. 
 

 

 
Figure 23:  A schematic of the spatially-broadband PSA experiment at 

Northwestern University. PPKTP: periodically-poled potassium-titanyl-phosphate 
crystal; EDFA: Erbium-doped-fiber amplifier; HWP: half-wave plate; DM: 

dichroic mirror; PBS: polarizing beam splitter; PZT: piezoelectric transducer 
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Figure 24:  Left — Average harmonic power generated with a 20-mm-long PPKTP 

crystal vs. average pump power for different pump-pulse durations. Right — 
Associated conversion efficiency for the SHG process 
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A signal beam derived from the residual 1560 nm beam was used to illuminate a target in 
one arm of a Mach-Zehnder interferometer. At the exit of the interferometer, the image-
bearing beam was recombined with the 780 nm pump beam after passing through a 4-f 
lens system. An image of the target was formed at the center of a second 20-mm-long 
PPKTP crystal for degenerate optical parametric amplification. The relative phase of the 
pump beam was actively controlled with the mirror mounted on a piezoelectric transducer 
so as to maintain phase sensitive amplification. The amplified image was magnified and 
relayed onto a Hamamatsu 1D array detector for gain measurements [29]. 
 
The performance of the optical parametric amplification was characterized by measuring 
the image gains when the pump beam was turned on. The pump beam was focused down 
to a waist size of about 40 μm at the center of the PSA crystal. No target was present at 
the signal path, and the waist of the collimated beam of about 800 μm was imaged onto 
the center of the crystal. The image profiles of the signal beam with and without phase-
sensitive amplification are shown in Figure 25. Since the pump waist was smaller than 
the signal beam, only the overlapping region of the signal beam was amplified. The gain 
values of the center pixel at different pump powers are plotted in Figure 25. The data 
show very good agreement with the theoretical fit that took into account the effects of the 
inhomogeneous pump and gain-induced diffraction [30]. The gain results show that the 
PSA is capable of delivering more than 16 dB of peak gain at 1 kW pump peak power.  
 

 

 
Figure 25:  Peak PSA gains obtained from the 20-mm-long PPKTP crystal. Inset: 1-

D spatial profiles of the input (blue trace, obtained with pump off) and amplified 
(green trace, obtained with pump on) Gaussian-shaped signal beam 
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3.2 Study of Classical Resolution Limits via Hypothesis Testing 

The Quantum Sensor Program seeks improvements in both angle-angle and range 
resolution compared to a reference classical LADAR system. The proposed solutions 
entail transmission of classical states while performing non-classical detection in the 
receiver in the form of squeezed-vacuum injection and phase-sensitive amplification. In 
order to support theoretical derivations and demonstrate in principle the feasibility of 
such resolution enhancements in Phase 1 of the QSP, laboratory table-top experiments 
utilizing initially only classical transmission and detection were done. The experiments 
were designed in accordance with the theoretical treatment of the resolution problem. 
Namely, resolution improvements were treated in the context of a binary hypothesis 
testing problem. In the most fundamental scenario, a sensor interrogates a target and must 
decide whether the received signal originated from one or two targets. This is in contrast 
to detecting whether a target exists at all. Theoretical analysis and simulations [31], for a 
specular target, anticipate a scaling of resolution with signal-to-noise ratio (SNR) 
proportional to SNR-1/4 for direct detection, while coherent detection improves the scaling 
exponent to (-1/2) for homodyne and heterodyne detection. In the case of speckle targets, 
the scaling for homodyne and heterodyne was shown to drop to (-3/10) [9].16 Phase I 
classical hypothesis testing was meant to establish a methodology for analyzing one-
dimensional resolution data in the context of a binary testing problem. The same 
methodology is meant to be incorporated in the more complex experiments down the 
road, i.e., stand-alone phase sensitive amplification and the combined squeezed-vacuum 
injection plus phase-sensitive amplification. 
 
As described Section 2.3, the baseline scenario requires distinguishing between two 
hypotheses. The null hypothesis (H0) assumes one target on boresight. The other 
hypothesis (H1) assumes two identical targets that are symmetrically displaced about the 
boresight that return the same number of signal photons to the LADAR as the single 
target. Thus, the decision is independent of the total number of photons seen by the 
receiver in each scenario, and it is assumed that the two hypotheses are equally likely. 
The hypothesis testing criterion is then derivable from Bayes’ rule with the appropriate 
photon probability distribution functions. For a relatively large photon flux, we 
implement a Gaussian distribution for the photon statistics, rather than a Poissonian 
distribution. The detection device used was an InGaAs linear array (Andor Technologies) 
of 512 discrete pixels (50 μm pitch) denoted as a discrete set, {xi∈[x1,. . .,xN]}. Each pixel 
in the detector array has noise that is comprised of two contributions. The dark noise 
( )(2

id xσ ) describes the noise from the detection system itself (dark current and load-
resistor thermal noise), and is independent of the light level impinging on each pixel. The 
second contribution ( ))((2

ixμσ l ) is due to the statistical nature of the light and the excess 
noise from the coherent light source. 
 
                                                 
16 Unlike the case described in Section 2.3, the initial proof-of-principle hypothesis 
testing experiments were performed with specular, rather than speckle, targets.  
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where xi denotes the individual pixels in the detector array, and μ(xi) is similar to the rate 
function denoted in [32]. We neglect the explicit time dependence of the rate functions 
which is embedded in the experimental data as the detector's integration time. The 
constant C was found from a quadratic fit to the excess noise measured in our coherent 
source. 
 
The following are the probability distributions that were used and the resulting criterion. 
P are the a-priori probabilities for each event, μ(x) are the spatially dependent measured 
mean values at each pixel and σ(x) are the associated variances. Both the means and the 
variances are assumed to be known prior to data collection. The analyzed data is denoted 
ri. 
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In the classical hypothesis testing experiments, a USAF resolution plate served as a 
target. Desired spatial resolutions were chosen and imaged one-to-one in transmission 
onto the array detector. Prior to data collection, we thoroughly investigated the noise 
characteristics of the detector. This investigation established the uniformity of the array 
and verified that each pixel’s noise process was independent of neighboring pixels. A 
schematic of the experimental setup is depicted in Figure 26. 
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Figure 26: Classical hypothesis testing configuration 

 
Measurements from this setup could provide the error rates with which a certain target is 
discerned as a function of SNR, but more importantly, the scaling of resolution versus 
SNR can be measured. By keeping a desired error probability fixed and examining the 
required SNR to reach a given resolution level, such scaling can be directly obtained. In 
this particular case, the use of a USAF 1951 resolution does not allow sampling of 
relatively high spatial frequencies. Alternatively, one can choose a set of slits on the 
resolution target corresponding to only one spatial frequency, while varying an aperture 
in front of the imaging lens. The resolution, relative to the Rayleigh limit, was defined as 
d/dR where d is the separation between the slits on the USAF target, and dR is the 
Rayleigh limit of the imaging configuration,  2Rd f Dλ= , with f being the focal length 
of the lens, λ being the center wavelength and D the lens’ aperture. The parameter D was 
varied via a micrometer controlled slit that facilitated collecting data below the Rayleigh 
limit. For desired values of D, the optical power impinging on the target was adjusted to 
maintain a fixed error probability, typically PE = 10-2. SNR was calculated once the power 
level was properly set according to the definition 
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where, ni is the photon number at pixel i. Below are experimental results for the scaling 
of resolution versus SNR for direct detection. Statistical analysis was performed with 
55,000 events at each power level. SNR fluctuations were extremely small as seen in 
Figure 27 such that the uncertainties are smaller than the data points. The dashed line in 
Figure 27 uses theoretical scaling, and further simulations revealed that the scaling 
exponent for direct detection (-1/4) held for both signal shot-noise and dark noise limited 
cases, and also occurred both for finite slit widths and point targets.  This scaling law 
only broke down in the very low SNR regime (SNR <5 dB), in which case the scaling 
indeed depended on the details of the target statistics and shape. 
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Figure 27: Classical hypothesis testing results for direct detection 

 

3.3 Theory Support for PSA Experiments 
A theoretical effort was undertaken to support PSA experiments directly by modeling 
signal propagation within the PSA. One of the most important tasks is that of maximizing 
the number of amplified modes (i.e., pixels) for a given pump power. 
 
A spatially-broadband PSA pumped by a plane wave can be described by an analytical 
model, which makes the PSA essentially equivalent to an active low-pass or band-pass 
filter in the spatial frequency domain (i.e., the behavior is described by a modulation 
transfer function or MTF). However, any practical pump beam has a finite spatial size 
and typically a Gaussian spatial profile (spatially-inhomogeneous pump). This finite 
Gaussian profile breaks the shift invariance symmetry of the PSA and makes the 
spatially-broadband PSA pumped by a Gaussian beam impossible to describe in terms of 
an MTF. In addition, no analytical solution is known for such a PSA with finite 
bandwidth. Thus, our theoretical approach has been to gain physical insights from 
analytical plane-wave theory and then extend this intuition into the numerical modeling 
of the realistic inhomogeneous pump cases. [33] 
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The main physical insight obtained from the plane-wave-pump theory is the range of 
spatial frequencies that can be amplified, i.e., the spatial bandwidth of the PSA. [34],[35] 
The gain of a phase-insensitive optical parametric amplifier of length L with plane-wave 
pump is given by 
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where we introduced phase mismatch factor r as a function of spatial frequency q=2π f: 
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The PSA gain is given by 
 

    ( ) 2 2
2 2 ( )

PSA PIA PIA| ( ) | | ( ) | 1 ,
opt opt
s s ss

i iG q e q G e Gθ θ θ θμ ν− −
= + = + −

  (34) 
 
where θs is the signal phase at the input, and the optimum input signal phase for 
maximum phase-sensitive gain is given by 
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The PIA and PSA gains are plotted in Figure 28 (left) for the parameters of the ongoing 
PSA experiment (with Δk=0).  Figure 28 also shows the optimum signal phase Eq. (35) 
(normalized by π) versus spatial frequency. For r ≥ 1, the sinh function in Eqn. (31) 
becomes a isin function (which leads to 1+(κLsinc)2 function for gain), and for r = 1 we 
have GPIA = 1 + (κL)2. The first zero of sinc function—also being the first zero of ν(q)—
occurs at 
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All previous papers have used Lkq s /~ ,
 
originating from Eq. (37), as an estimate for 

the spatial bandwidth and its scaling with L. The estimates given by Eqs. (36)–(38) are 
plotted in Figs. 28 and 29 and compared to the actual 3-dB bandwidths of PIA and PSA 
gains expressed by Eqs. (31) and (34), respectively.  The left portion of Figure 28 shows 
OPA gain versus spatial frequency 2f q π=  for parameters of the ongoing Northwestern 
experiment. The right portion of Figure 28 shows the spatial bandwidth 2c cf q π=  of a 
25-mm-long KTP-based OPA at 1550 nm signal wavelength, as a function of the PIA 
gain at zero spatial frequency. Also shown in Figure 28 is the optimum signal phase 
maximizing the PSA gain. An arrow in the left figure indicates the location of the first 
zero of ( )2 fν π function.  Labels “PSA opt.,” “PIA, and “PSA 4π ” in Figure 28 
correspond to –3-dB bandwidths of PSA with optimum signal phase, PIA, and PSA with 

4sθ π= signal phase, respectively. Thick red line corresponds to the location of the first 
zero of ( )2 fν π . Dashed red lines are its asymptotes for low and high pump powers. The 
traditional estimate of spatial bandwidth corresponds to the low-power asymptote 

)2/( Lks π  (horizontal dashed red line). 
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Figure 28: Left — OPA gain versus spatial frequency. Right — Spatial bandwidth 

as a function of the PIA gain at zero spatial frequency 
 
An alternative way to estimate the 3-dB bandwidth for large pump powers (i.e., large κ) 
is to note that the sinh function becomes an exponential function at high gains, i.e., 
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and at the 3-dB bandwidth fc we have 
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The estimates calculated from Eq. (41), also plotted in Figs. 28 and 29, are very accurate 
at high gains. One can also see that even at low gains Eq. (41) provides a closer and more 
conservative value to the actual bandwidth than Eqs. (36)–(38). The spatial bandwidth 
dependence on L is shown in Figure 29 (left). 
 
Also note that for small values of κL, optimum signal phase Eq. (35) is 
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i.e., signal phase is obtained by placing the focus of the image at z0 = L / 2 (middle of the 
crystal). The PSA gain for such a focused beam is also plotted in Figure 28, and one can 
see that the difference between this resultant gain and optimum PSA gain is negligible. 
The difference between the actual optimum signal phase Eq. (35) and the approximate 
phase Eq. (42) is plotted in Figure 29 (right) for several values of the PSA gain at zero 
spatial frequency. The left portion of Figure 29 shows spatial bandwidths 2c cf q π=  of a 
KTP-based OPA at 1550 nm as a function of crystal length L for a fixed pump power (κ 
= 0.046 mm–1, which corresponds to 10 dB PSA gain for L = 25 mm). Color coding and 
other notations are the same as those in the right portion of Figure 28. The right portion 
of Figure 29 plots the difference between the actual optimum signal phase (Eq. 35) and 
the approximate phase (Eq. 42) for various values of the PSA gain at zero spatial 
frequency. The last point on each curve corresponds to the first zero of ( )2 fν π . 
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Figure 29: Left — Spatial bandwidths of an OPA at 1550 nm as a function of crystal 

length. Right — Difference between the actual optimum signal phase and the 
approximate phase for various values of the PSA gain at zero spatial frequency 

  
Although the plane-wave-pump approach is not applicable to real PSAs, it provides some 
qualitative insights into the performance that can be expected from these devices. In 
particular, the plane-wave theory estimates given by Eqs. (36)–(38) and (41) for the 
PSA’s spatial bandwidth can be multiplied by the size of the real pump beam to estimate 
the number of spatial modes amplified in each dimension. This approach leads to an 
important conclusion that the total number of amplified modes (pixels) is proportional to 
the total pump power. See references [36],[37]. 
 
To predict propagation of an image through a realistic PSA, we have developed and 
applied a 3D numerical modeling tool based on the split-step Fourier method (also known 
as FFT-BPM). We have carefully verified this model against PSA experimental gain 
measurements taken at various pump powers, and found good quantitative agreement (see 
Figure 25). Next, we have optimized the pumping configuration to maximize the number 



54 

of amplified modes (pixels) for a given pump power [37],[38]. For example, Figure 30 
shows the input and amplified text image at 1560 nm, experiencing both total-power and 
peak gains of ~10 dB at 10-kW pump power in a 25-mm-long KTP crystal. Here, image 
size is ~220×90 μm2 and the optimized elliptical-Gaussian pump spot size is 300×35 μm2 

(at 1/e intensity radius). The vertical scale is linear and normalized by the peak intensity 
of the input image. The horizontal scale is in arbitrary units. In Figure 30, images (b) and 
(d) are the top views of (a) and (c), respectively, and (e) is the front-side view of (c). 

From Figure 30(e) one can see that the text image is clearly recognizable, with even the 
peripheral portions of the text experiencing gain in excess of 6 dB. In the plane-wave 
approximation, the diameter of the PSA’s point-spread function can be roughly estimated 
as ~ [L/(2πks)]1/2 = 23 μm from the inverse of the crystal’s spatial phase-matching 
bandwidth, although the underlying approximation tends to overestimate the spatial 
bandwidth, as pointed out above. For an inhomogeneous pump of a given spot size, the 
number of amplified pixels can be approximated by the ratio of the pump-beam area 
πa0pxa0py and the effective pixel area L/(8ks) of the plane-wave-pump case, which gives 
~80 effective pixels of resolution in our chosen example. This order-of-magnitude-
accurate number of amplified pixels roughly agrees with the estimated number of 
observed amplified pixels found by counting the number of dark and bright lines in x and 
y dimensions in (d), which is at least 12×5=60 pixels. In our optimizations, we have also 
investigated the impacts of Guoy phase on the PSA gain, finding that this phase makes 
the optimum signal phase slightly different from that expected from the plane-wave-
pump theory. This phase deviation is particularly important for the de-amplified 
quadrature. 
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Figure 30: Intensity image before (a, b) and after (c, d, e) amplification by the PSA 
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To summarize, we have used a plane-wave theory to develop an improved estimate of the 
PSA’s spatial bandwidth. We have found that the conditions for an optimum input signal 
phase profile are approximately satisfied by simply placing the image focus at the middle 
of the crystal. We have applied these insights to optimize image amplification in a PSA 
with a finite-size pump, and obtained gains between 6 dB and 10 dB for over 60 pixels at 
10-kW pump power. This computation has been accomplished with a specially-
developed PSA numerical solver, which has proven to be quantitatively accurate in 
comparisons with PSA experimental data. Furthermore, for calculations of noise 
evolution in the PSA, we have developed a Green’s-function formalism yielding noise 
correlation functions at the output of a PSA with arbitrary pump profile. [33]  
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4.0 RANGE PROOF-OF-CONCEPT EXPERIMENTS 

In standard optical coherence tomography (OCT) the range resolution is determined by 
the spectral bandwidth of the probe pulses and is ultimately limited by dispersion in the 
pulse propagation medium.  Quantum optical coherence tomography (Q-OCT) utilizes 
entangled photon pairs from spontaneous parametric downconversion (SPDC) to 
demonstrate a factor of two improvement in axial resolution with even-order dispersion 
cancellation [39],[40].  Erkmen and Shapiro [1] have shown theoretically that the 
measurement advantages of Q-OCT do not derive from entanglement but rather from the 
phase-sensitive cross correlation between the signal and idler light.  Moreover, based on 
this discovery, they proposed a new technique, called phase-conjugate optical coherence 
tomography (PC-OCT) [1], that uses classical resources with an unconventional, but still 
classical, receiver to achieve the same factor-of-two resolution enhancement and even-
order dispersion cancellation as Q-OCT.  In the context of target ranging in the Quantum 
Sensors Program the PC-OCT concept is a Type-2 quantum sensor, which we shall more 
appropriately refer to as phase-conjugate ranging (PCR). 
 
The basic idea of PCR is shown in Figure 3 of Section 2.0.  A classical transmitter sends 
a probe pulse to interrogate the target and the reflected pulse is fed into a phase-conjugate 
amplifier that generates an amplified phase-conjugate probe pulse.  The amplification 
overcomes the losses in the probe pulse transmission and phase conjugation provides the 
necessary spectral phase reversal to compensate dispersion.  The phase-conjugate probe 
pulse is transmitted to the target for a second round of interrogation before the returned 
pulse is mixed with a reference pulse for detection.  The goal of the PCR proof-of-
concept demonstration in Phase I of the Quantum Sensors Program was to verify the 
factor-of-two axial resolution improvement and the dispersion cancellation, relative to a 
standard OCT arrangement.     

4.1 Transmitter and Phase-Conjugate Amplifier Characterization 
There are two key components for implementing PCR.  The first device is a classical 
transmitter that generates the reference and probe beams with phase-sensitive cross 
correlation, and the second device is a phase-conjugate amplifier.  In our experiment the 
transmitter was a parametric downconverter based on a 20-mm-long periodically poled 
MgO-doped lithium niobate (PP-MgO:LN) crystal.  Pumped by 50-ps pulses at 780 nm 
with a repetition rate of 31 MHz, the parametric downconverter generated reference and 
probe outputs centered at 1560 nm.  The phase-sensitive cross correlation between the 
two outputs was utilized for interferometric measurements at the receiver.  Figure 31 
shows the spectral brightness (measured at the output of a single mode fiber) of the 
downconverter's fiber-coupled output at 1550 nm as a function of the average pump 
power.  The exponential growth at high pump power indicates amplification of the 
spontaneously emitted outputs.  SPDC is often used for generating entangled photons at 
low flux, typically with a mean photon pair number of much less than unity per pulse.  In 
our case, at a spectral brightness of 1 nW/nm the transmitter output in our setup contained 
~250 photons per pulse that was far brighter than an SPDC entangled photon source.  At 
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this brightness level the transmitter outputs behaved classically.   Figure 32 displays the 
measured power spectrum of the parametric downconverter outputs, showing a large 
phase-matching bandwidth of 143 nm.  The dashed line in Figure 32 is a theoretical 
phase-matching curve obtained from the Sellmeier equation. The large bandwidth 
afforded the flexibility to choose the appropriate measurement wavelengths and 
bandwidths.  We chose a reference wavelength of 1550 nm and a probe wavelength of 
1570 nm with a bandwidth of 0.36 nm for resolution improvement measurements.  For 
dispersion cancellation measurements we used a larger bandwidth of 5 nm. 
 

 

 
Figure 31: Spectral brightness of optical parametric downconverter as a function of 

pump power 
 

 

 
Figure 32: Power spectrum of parametric downconverter output 
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The phase conjugate amplifier was an optical parametric amplifier (OPA) based on a 20-
mm-long PP-MgO:LN crystal and pumped by the same pulsed 780-nm laser that was 
used for the transmitter downconverter.  The OPA was used to generate a 1550-nm 
phase-conjugate beam from the returned probe beam at 1570 nm and to provide gain.  
Figure 33 shows the OPA gain as a function of the average pump power, achieving a gain 
of nearly 20 dB at a pump power of 2 W.  More details on the OPA performance 
including the theoretical model used for the calculation displayed in Figure 33 can be 
found in a technical memorandum on the OPA [41].  The dashed curve in Figure 33 is 
derived from a theoretical calculation that assumes an effective peak power level that is 
60% of the estimated power.  We attribute the power reduction to pulse broadening due 
to self-phase modulation. 
 

 

 
Figure 33: Optical parametric amplifier gain as a function of pump power 

 

4.2 Baseline Classical OCT Measurements 

We performed baseline measurements using a classical OCT setup, as shown in Figure 
34.  The transmitter (SPDC) reference and probe outputs were separated using a coarse 
wavelength division multiplexer (CWDM) and directed into a reference channel centered 
at 1550 nm and a probe channel centered at 1570 nm.  We sent the probe to the target, 
which was a highly reflective mirror mounted on a translation stage.  The reflected probe 
was supplied as the input to the OPA to generate an amplified phase-conjugate beam at 
1550 nm, matching the reference wavelength exactly.  The reference beam was 
retroreflected from a mirror located on a moveable stage that acted as a delay line, so that 
the reference pulse and the phase-conjugate probe pulse could be temporally matched.  
Interferometric measurements using a fiber 50-50 beam splitter were made as a function 
of the reference mirrorposition.   
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Figure 34: Schematic of the setup for classical OCT baseline measurements 

 
Figure 35 shows the results of interferometric measurements for two different target 
positions separated by 2.35 mm.  At each target position the reference mirror was moved 
over small distances and the maximum and minimum powers of the reference-probe 
interference envelope were recorded.   The envelope contrast C is obtained from 
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where Pmax and Pmin are the maximum and minimum measured power levels.  The 
average measured axial resolution based on the two curves in Figure 35 was 2.39 mm.   
 
We calculated the expected axial resolution as follows. (Details can be found in a   
technical memorandum [42].)  The bandpass filter was measured to have a double-
Lorentzian filter shape with a full width at half maximum (FWHM) bandwidth of 0.36 
nm.  By approximating the pulse shape of the probe and reference pulses to be the 
Fourier transform of the bandpass filter spectrum, we obtained the envelope contrast C 
based on the convolution of the reference and probe pulses: 
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where zR is the reference mirror translation from the center and Δν = 45 GHz is the 
frequency bandwidth of the 0.36-nm bandpass filter.  The dashed curves in Figure 35 are 
the theoretical fits from Eq. (44), showing excellent agreement between theory and 
measurements.  Reference mirror shift was measured to be 2.36 mm in good agreement 
with the target positional shift of 2.35 mm. The single-pass classical OCT measurements 
clearly show that the target positional shift was equal to the reference positional shift, and 
the resolution was limited by the pulse widths of the reference and probe beams. 
 

 
Figure 35: Envelope contrast of interferometric measurements between reference 

and probe as a function of the reference mirror delay for two target positions 
 

4.3 Phase-Conjugate Ranging Measurements without Dispersion 

To implement the PCR experimental setup we modified the classical OCT setup of 
Figure 34 to include a second CWDM module for routing the phase-conjugate probe to 
interrogate the target a second time, as shown in Figure 36.  The same transmitter outputs 
for the probe and reference beams were used to facilitate a direct comparison with the 
baseline classical OCT measurements.  The purpose of the double-pass configuration was 
to obtain a factor-of-two axial resolution improvement.  Dispersion in this setup was 
negligible.  
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Figure 36: Schematic of setup for PCR measurements 

 
 
 

 

 
Figure 37:  Envelope contrast of interferometric measurements between reference 

and probe as a function of reference mirror delay for two target positions 
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Figure 37 shows the results of the PCR measurements using probe and reference pulses 
set by the 0.36-nm bandpass filters.  For a target positional shift of 1.18 mm, the 
measured reference mirror shift was 2.22 mm, or a factor of two larger within 
experimental uncertainties.  With the same measurement bandwidth of ~2.39 mm, the 
PCR measurements clearly indicate that for the same amount of reference mirror travel, 
PCR allows target positional detection at half the amount of the travel.  This 
measurement constitutes an axial resolution improvement of a factor of two relative to 
the classical OCT technique. Dashed lines in Figure 37 are theoretical fits based on Eq. 
(44).  

4.4 Phase-Conjugate Ranging Measurements with Dispersion 
The PCR measurements in Section 4.3 used a narrow 0.36-nm bandpass filter so that 
dispersion due to the small length of SMF28 single-mode optical fiber is negligible.  
Industry specification of SMF28 fibers shows a dispersion value of 17 ps per kilometer of 
fiber per nanometer of bandwidth.  For 0.36 nm bandwidth and 10 meters of fiber, the 
estimated dispersive broadening amounts to only 0.06 ps, which is small compared with a 
pulse width of ~10 ps.   
 
We chose to test the dispersion cancellation property of PCR by increasing the filter 
bandwidth to 5 nm with the corresponding pulse width of ~0.8 ps, or a spatial coherence 
length of 0.24 mm.  The probe arm had a total SMF28 fiber length of ~51 meters, and 
PCR dispersion cancellation would only occur for the length of fiber within the double-
pass configuration of the probe arm. Because dispersion could not be corrected in the 
reference arm, we used a dispersion-shifted fiber wherever possible, comprising ~37 
meters of such fiber with a dispersion coefficient of 4 ps/km/nm.  Figure 38 shows a 
typical interferometric envelope with a measured width of 0.38 mm. This measurement is 
in good agreement with our model, taking into account the dispersion in the reference 
arm and the small uncompensated section in the probe arm.  As a comparison, if 
dispersion cancellation were absent, the measured width would have been 0.78 mm.  
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Figure 38: Envelope contrast of interferometric measurements between reference 

and probe as a function of reference delay for 0.8-ps pulses 
 
Figure 39 shows the same PCR measurements for six target positions with 0.10-mm 
separation between adjacent target locations.  The average measured reference mirror 
displacement between adjacent targets is 0.225 mm, which is in agreement with the 
expected value of 0.20 mm, thus demonstrating the factor-of-two axial resolution 
improvement of PCR with dispersion cancellation.  The variations in reference mirror 
displacements were due to temperature fluctuations that led to variations in fiber lengths 
and hence shifts in the temporal overlap between the reference and probe pulses.  In 
principle, this effect could be avoided by stabilizing the temperature of the entire optical 
fiber setup, or by operating the system in free space.   The PCR measurements using 
subpicosecond pulses thus verify the basic concept of PC-OCT showing a factor-of-two 
improvement in axial resolution with dispersion compensation [1]. 
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Figure 39: Envelope contrasts and Gaussian fits (solid lines) of interferometric 

measurements between reference and probe as a function of reference mirror delay 
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5.0 TYPE-2 LADAR CONCEPT 

The quantum imaging LADAR sensor described previously can enhance the angular 
resolution — over a conventional sensor — by recovery of some of the high-spatial-
frequency content rejected by a soft aperture (using locally generated squeezed vacuum) 
and by recovery of lost image information caused by low quantum efficiency of the 
detector array (using receiver-side phase-sensitive amplification).  The LADAR will 
function as a Type-2 quantum sensor (classical illumination and interaction with the 
target, but quantum detection).  
 
Figure 40 shows the preliminary layout of the proposed LADAR showing quantum PSA 
and SVI and bistatic illumination of a target. The shaded region enclosed with a dashed 
line depicts the QIE function provided by phase-sensitive amplification (right) and 
squeezed-vacuum injection (far left).  The local oscillator, necessary for homodyne 
operation, is generated within the shaded region.  A classical LADAR baseline would be 
created by blocking the QIE functionality of both the PSA and the SVI.  A portion of the 
generated beam (lower left) is picked off from the QIE section, amplified and used to 
illuminate a target as in conventional classical LADAR operation. 
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Figure 40: Design layout of QSP LADAR  
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The scattered light from the target is collected by a receive telescope and directed by a 
scanning mirror onto a linear detector array operated as a balanced mixer.  Operation of 
the detector as a balanced mixer is essential for observing the squeezing phenomenon in 
which the noise (in one quadrature component) is below the standard quantum noise level 
of a coherent state.  The detected signal is then sent to a computer for image processing.  
Both a direct image and the modulation transfer function (MTF) of the image can be 
collected during LADAR system operation, although only direct image generation is 
shown in Figure 40.  The use of MTF analysis should show quantitatively the spatial 
frequency enhancement realized by employing QIE in the LADAR receiver.  Images, 
such as those depicted in Figure 10, can be created with a baseline LADAR and with the 
baseline LADAR enhanced with the PSA activated separately, the SVI activated 
separately and both PSA and SIV activated together.  The resultant images from a 
quantum LADAR can be contrasted with those collected from the baseline LADAR with 
both PSA and SVI inactive.  
 
Theory and proof-of-concept experiments predict that quantum enhancement should 
enable a standoff LADAR to function with remarkably improved resolution.  However, 
future development of such a complex LADAR comes with concomitant risk.  Significant 
risks associated with this LADAR development are summarized in this section ranked in 
order of our estimate of severity. 
 

1) Preservation of squeezing throughout the LADAR System: 
Although for the table top demonstration proposed in this program the 
location of the soft aperture is well defined, in a practical system the 
location of the aperture is more complex.  Therefore, the location for 
injection of the squeezed vacuum signal may be problematic.  
Moreover, preserving the integrity of the squeezing throughout the 
entire imaging system is a complex undertaking.  A high level of 
squeezing must be retained through i) a half wave plate, ii) a 
polarization beam splitter, iii) reflection  from a partially-reflecting 
mirror (or some more complicated soft-aperture object), iv) the PSA 
system, and v) the homodyne mixing system.  Throughout this entire 
optical path there are numerous opportunities for amplitude and 
coherence loss in the signal. 

2) Homodyne Detection of SVI: Homodyne detection of a squeezed-
vacuum injected signal across a large linear or 2-D array poses a 
significant risk.  The homodyne detection system must be carefully 
matched to the quadrature that is squeezed.  Even if this is achieved for 
a single spatial mode, maintenance of this matching across the entire 
array will require an extremely precise imaging system. 

3) Mode Matching of PSA and SVI: Matching the amplified modes of 
the PSA to the squeezed modes of the SVI must be achieved so that the 
amplified quadrature of the PSA has a maximum mode match with the 
squeezed quadrature of the SVI. 
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4) PSA Pump Power: Limited PSA pump power could significantly 
restrict LADAR operation.  In the direct-detection experiments reported 
in Section 3.0, a shot-noise-limited regime was determined to be around 
106 photons per pixel; however, all resolution measurements were 
undertaken in the dark-noise-limited regime.  It is not clear at this time 
in which regime the LADAR will be operated to satisfy several 
important criteria—low dark noise, quantum efficiency that is 
reasonable with respect to the amount of PSA gain attained, and 
sufficiently strong amplified signals.  Although the attainment of a 
suitable pump light source remains a significant risk, this is a technical 
problem rather than a scientific problem.  The peak pump-source power 
needs to be greater than 10 kW for generating sufficient image gain.  
Moreover, the pump must provide stable, high repetition rate pulses that 
have a flat-top temporal profile with short rise and fall times to avoid 
any temporal averaging and to minimize mode-matching effects for 
PSA and SVI.  Low-frequency pump noise must also be minimized, as 
it will adversely affect the local oscillator.  

5) Imaging Detector: Multipixel homodyne imaging detection is a risk, 
although the risk is technical and not scientific.  For our imaging 
detector, measurements will have to be made at baseband where 
numerous noise sources must be overcome.  As we have encountered in 
QSP Phase I, detector companies that package the detectors with an 
electronic backplane provide limited information from which to 
optimize measurements.  The risk to the program is allowing too much 
effort to be devoted to detector engineering rather than to PSA and SVI 
LADAR characterization. 

6) Relative Signal Phase Stabilization: As a technical rather than a 
scientific risk, several servo loops will need to be implemented to 
stabilize the relative phases between the pump and signal.  Also, optical 
paths within the PSA and SVI sections must be maintained identical in 
length, and optical elements within those paths must be selected to 
minimize mismatch between the pump and signal beams. 

 
These risks enumerated above pertain to the SVI and PSA functions of the LADAR and 
present significant challenges that do not require scientific breakthroughs as much as 
herculean technological efforts. 
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6.0 SUMMARY 

In summary, the resolution of a homodyne LADAR can be enhanced significantly by 
applying quantum optical techniques in the receiver.  This study explored theoretically 
three quantum sensor types, and developed two laboratory proof-of-concept 
demonstrations for angle-angle resolution improvement and for range resolution 
improvement.  With a quantum image enhancer (QIE) inserted between the receive optics 
and the detector of a classical homodyne LADAR, an angular cell resolution 
improvement of 10x can be realized.  The QIE is comprised of two key elements—a 
squeezed-vacuum injector (SVI) that restores the high spatial frequencies lost by 
attenuation in soft-aperture entrance optics in the LADAR and a phase sensitive amplifier 
(PSA) that overcomes the inefficiency of the homodyne detector.  When the QIE is 
combined with a phase-conjugate optical coherence tomographic (PC-OCT) technique 
for a two-fold range resolution enhancement, a 200-fold voxel (angle-angle-range) 
improvement is possible for a standoff homodyne LADAR.  Underlying theory was 
established that relates the LADAR’s signal-to-noise ratio (SNR) to its angular 
resolution.  This modeling provided the framework within which various detection 
scenarios could be compared when resolving specular returns and fully-developed 
speckle scatter from a LADAR target. The efficacy of using non-classical light (a Type-1 
sensor) for propagation to a target was shown to offer, at most, an inconsequential target-
detection advantage for the highly-lossy scenarios associated with LADAR operation 
over 1-100 km standoff ranges. Several key no-go theorems were developed with respect 
to both Type-1 and Type-3 sensors. Two alternative quantum sensor categories—Type-2 
using classical light with a non-standard receiver and Type-3 using transmitter-receiver 
entanglement—were studied theoretically. The approach employing a QIE for a Type-2 
sensor was shown to present the most promise.  The characteristics of the three types of 
sensors and a summary of salient theoretical results related to each type were presented. 
In addition, extensive modeling based on the developed theory showed Type-2 sensor 
image improvement realized by employing SVI, PSA and combined SVI and PSA. 
Experimental results validating the QIE concept were shown using a PSA for angle 
image improvement and PC-OCT for two-fold range improvement, as well as for 
dispersion compensation.  A Type-3 sensor technique, known as quantum illumination, 
was also studied theoretically and its application to secure communication briefly 
summarized. Ghost imaging applied to standoff sensing was examined and its underlying 
theory comprehensively explored. Finally, a conceptual design was introduced for a 
homodyne LADAR Type-2 sensor incorporating both PSA and SVI in a quantum-
enhanced receiver.  
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8.0 ACRONYM LIST 

 
BPSK   Binary Phase Shift Keyed 
CCD   Charge Coupled Device 
CS   Coherent State 
CWDM  Course Wavelength Division Multiplexing 
EDFA   Erbium-Doped Fiber Amplifier 
FFT   Fast Fourier Transform 
BPM   Beam Propagation Model 
FWHM  Full Width Half Maximum 
iid   independent identically distributed 
KTP   Potassium-Titanyl-Phosphate 
LADAR  LAser Detection And Ranging 
LPD   Low Probability of Detection 
LPI   Low Probability of Intercept 
MTF   Modulation Transfer Function 
OCT   Optical Coherence Tomography 
OPA   Optical Parametric Amplifier 
PCR   Phase-Conjugate Ranging 
PC-OCT  Phase-Conjugate Optical Coherence Tomography 
PIA   Phase Insensitive Amplifier 
PPKTP   Periodically-Poled Potassium-Titanyl-Phosphate  
PP-MgO:LN   Periodically Poled Magnesium Oxide-doped Lithium Niobate  
PSA   Phase-Sensitive Amplifier 
QI   Quantum Illumination 
QIE   Quantum Image Enhancer 
QKD   Quantum Key Distribution 
Q-OCT  Quantum Optical Coherence Tomography 
QSP   Quantum Sensors Program 
SHG   Second Harmonic Generator 
SLM   Spatial Light Modulator 
SMF   Single Mode Fiber (SMF28 is a Corning single mode fiber) 
SND   Signal-Number Diagonal 
SNR   Signal-to-Noise Ratio 
SPDC   Spontaneous Parametric Down Conversion 
SVI   Squeezed Vacuum Injection 
 
 
 
 




